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LAUDATIO
CEREMONIA DE INVESTIDURA

COMO DOCTOR HONORIS CAUSA
DE D. ALAN E. GELFAND

Con la venia de la Rectora Magnífica de la Universidad 
de Zaragoza

Claustro togado
Autoridades
Miembros de la comunidad universitaria
Familiares
Señoras y señores

Es un verdadero honor para el profesor Gerardo Sanz 
y para mí apadrinar al profesor Alan E. Gelfand en su 
nombramiento como doctor honoris causa por la Universi-
dad de Zaragoza. Y no solo para nosotros, sino también 
para los tres proponentes: los departamentos de Métodos 
Estadísticos y Economía Aplicada y el Instituto Universita-
rio de Matemáticas y sus Aplicaciones, así como para la 
Facultad de Ciencias, que también ha apoyado la pro-
puesta de este reconocimiento.

Según el reglamento del nombramiento de los docto-
res honoris causa (HC) de la Universidad de Zaragoza, esta 
distinción se otorga a aquellas personas que destacan y 
tienen un prestigio excepcional en el campo de la in-
vestigación y que son portadoras de valores universales. 
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Además, se valoran los vínculos del candidato con la Uni-
versidad de Zaragoza (UZ). Y, sinceramente, no puedo 
pensar en una persona que cumpla todos y cada uno de 
esos requisitos mejor que el profesor Alan E. Gelfand.

Para evitar cualquier duda, podemos usar el procedi-
miento matemático habitual y formularlo en forma de 
teorema: tenemos tres hipótesis (prestigio internacional, 
ser portador de valores universales y vinculación con la 
UZ) y, si demostramos esas hipótesis, obtendremos como 
conclusión que el profesor Alan E. Gelfand es el candi-
dato perfecto para ser investido doctor HC por la UZ. 
Y la demostración de esas hipótesis es irrefutable, como 
se expone a continuación.

Hipótesis 1: Prestigio científico

Tengo que decir que demostrar esta tesis es una tarea 
sencilla, pero hacerlo en unos pocos minutos es casi impo-
sible, ya que resulta difícil resumir en tan poco tiempo los 
innumerable méritos y premios de su trayectoria académi-
ca; así que lo que sigue es solo un breve resumen de ella.

Nacido en Nueva York, Alan E. Gelfand cursó sus estu-
dios de grado en Matemáticas en el City College of New 
York. Posteriormente, obtuvo su doctorado en Estadística 
en la Universidad Stanford, bajo la dirección del profesor 
Herbert Solomon. Comenzó su carrera docente e investi-
gadora en la Universidad de Connecticut, donde trabajó 
durante más de treinta años. En 2002, se incorporó a la 
Universidad Duke, la sexta en el ranking de las universida-
des de Estados Unidos, donde fue nombrado James B. 
Duke Professor of Statistical Science, la posición académi-
ca más prestigiosas de esa institución.

Su nombre está indeleblemente ligado a uno de los 
hitos más trascendentales en la historia reciente de la 
Estadística: la introducción y formalización del uso de 
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los métodos de Montecarlo vía cadenas de Márkov 
(MCMC) en el contexto del análisis bayesiano. En 1990, 
junto con el profesor Adrian Smith, el profesor Gelfand 
publicó el artículo «Sampling-Based Approaches to Cal-
culating Marginal Densities», en el JASA (Journal of the 
American Statistique Association), una de las revistas más 
prestigiosas de Estadística. Este artículo marcó un punto 
de inflexión en la inferencia estadística moderna, permi-
tiendo abordar problemas que hasta ese momento eran 
prácticamente intratables. Lo que antes era teoría, gra-
cias al profesor Alan E. Gelfand, se volvió una técnica útil 
y aplicable. El Gibbs sampling, que ha sido un algoritmo 
clave desde entonces, se debería llamar Gelfand’s sam-
pling, como sostienen muchos investigadores bayesianos. 
Ese artículo ha sido citado más de 10 500 veces.

Desde entonces, ha realizado contribuciones de im-
portancia en múltiples áreas, principalmente modelización 
jerárquica bayesiana, estadística espacial y modeliza-
ción espaciotemporal. Su productividad científica es ex-
traordinaria: ha publicado más de 350 artículos en revis-
tas académicas, 10 libros y monografías y ha dirigido 
decenas de tesis doctorales. Su libro Hierarchical Modeling 
and Analysis for Spatial Data, junto a los profesores Baner-
jee y Carlin, es considerado una de las «biblias» de la mo-
delización bayesiana y recientemente se ha publicado su 
tercera edición.

El profesor Alan E. Gelfand ha recibido numerosos re-
conocimientos internacionales por su investigación, en-
tre los que destacan:

—	Samuel Wilks Memorial Award.
—	Distinguished Research Medal from ASA Section 

on Statistics and the Environment.
—	Elected Fellowship del International Statistical 

Institute (IMS), la American Statistical Association 
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(ASA) y la International Society for Bayesian Analysis 
(ISBA).

—	Presidente electo del ISBA.
—	Chernoff Excellence Statistic Award.

Ha sido reconocido como uno de los 10 científicos ma-
temáticos más citados del mundo en el período 1991-
2001 (Tenth Most Cited Mathematical Scientist in the World 
1991-2001, Science Watch) y se encuentra entre los mejores 
matemáticos del mundo en el ranking de la tercera edi-
ción de Research.com. Es importante insistir en que esto 
solo es un breve resumen de su extensa lista de premios y 
distinciones.

Hipótesis 2: Portador de valores universales

Como hemos establecido, la investigación del profesor 
Alan E. Gelfand ha contribuido de forma esencial a los 
fundamentos teóricos del análisis bayesiano, pero su in-
fluencia va más allá. Ha dedicado una parte importante de 
su trabajo a desarrollar aplicaciones, utilizando técnicas 
bayesianas, para dar respuesta a problemas de interés para 
la sociedad, especialmente en ciencias medioambientales, 
salud, estudios de polución y biodiversidad; también ha 
trabajado en aplicaciones climáticas, desarrollando mode-
los de gran utilidad en la monitorización del cambio climá-
tico. No hay ninguna duda de que su investigación ha ayu-
dado a mejorar la sociedad y el mundo en el que vivimos.

Otra evidencia de sus valores universales es su impli-
cación y generosidad en la formación de nuevos investi-
gadores y sus colaboraciones con múltiples grupos de 
investigación. Ha dirigido más de 35 tesis doctorales y, 
en palabras de uno de ellos, el profesor Alan E. Gelfand 
representa el modelo perfecto de un director de tesis. 
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También ha establecido colaboraciones de investigación 
en todo el mundo, y todo ello con una generosidad que 
ha creado no solo relaciones profesionales, sino también 
de amistad duradera. Una muestra de ello es que hoy 
tenemos aquí a muchos investigadores en estadística ba-
yesiana de primera línea internacional que han venido 
desde distintos puntos de España, desde Roma, Milán, 
Southampton e incluso del otro lado del Atlántico: desde 
Washington, Texas, California y Carolina del Norte. To-
dos ellos están hoy aquí en Zaragoza, para celebrar con 
él este nombramiento. Esto es una prueba irrefutable del 
gran impacto que Alan ha tenido en todos ellos, como 
investigador y como persona.

Hipótesis 3: Vinculación con la Universidad de Zaragoza

La colaboración del profesor Alan E. Gelfand con la 
UZ comenzó en 2012, primero con los profesores Manuel 
Salvador, María Asunción Beamonte y Pilar Gargallo, del 
Departamento de Economía Aplicada y, poco después, 
con profesores de la Facultad de Ciencias. En particular, 
desde 2014, ha formado parte del grupo Modelos Esto-
cásticos, dirigido por el profesor Gerardo Sanz, gracias a 
la profesora María Asunción Beamonte, que lo introdujo 
en el grupo. Dentro de este marco, el profesor Alan E. 
Gelfand también ha formado parte del equipo de trabajo 
en cinco proyectos con financiación nacional. Su influen-
cia en la UZ es indudable. Dennis Lindley, uno de los 
grandes promotores del «bayesianismo» en el siglo xx 
dijo: «Inside every non-Bayesian there is a Bayesian stru-
ggling to get out». Sin duda, el profesor Alan E. Gelfand 
ha sacado al bayesiano que muchos de los profesores de 
Estadística de esta universidad, entre quienes me incluyo, 
llevábamos dentro. El resultado es que, gracias a su in-
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fluencia, en este momento hay un nodo importante de 
estadísticos bayesianos en la Universidad de Zaragoza.

Respecto a la proyección de la UZ, en todos los proyec-
tos en los que ha colaborado con la UZ, el profesor Alan 
E. Gelfand ha trabajado con datos españoles y con fre-
cuencia de Aragón, de forma que tanto en sus publicacio-
nes como en sus numerosas conferencias invitadas ha lle-
vado el nombre de nuestra comunidad y de la UZ por 
todo el mundo.

También ha posibilitado que varios profesores de la 
UZ realicen estancias de investigación en Duke y él visita 
regularmente la UZ. Y, en este punto, tengo que expresar 
el honor y el placer que es trabajar con Alan, y estoy segu-
ra de que Jesús Asín, Jorge Castillo y otros investigadores 
presentes aquí hoy coincidirán conmigo. En todas y cada 
una de las reuniones que tenemos con él aprendemos 
algo; en las discusiones de trabajo, siempre surgen ideas 
interesantes, naturalmente las planteadas por él, pero in-
cluso diría que, con su presencia, hace surgir mejores 
ideas del resto del equipo; el Zaragoza team, como él nos 
llama. Además, consigue un ambiente de trabajo en equi-
po, donde todas las ideas se escuchan y se consideran, sin 
establecer jerarquías, que él, por su posición, podría esta-
blecer. Esta accesibilidad y humildad, a pesar de sus innu-
merables méritos, hace que, a veces, sea fácil olvidar el 
privilegio que es trabajar con uno de los matemáticos ac-
tuales más importantes a nivel mundial. Por eso, a veces 
es necesario que otros nos lo señalen. Recuerdo que, des-
pués del primer artículo que publicamos con él, un pro-
fesor de otra universidad me felicitó por esa publicación 
y le dije: «Sí, estamos muy contentos: es el primer artículo 
que publicamos en la JRSS», una revista muy prestigiosa, 
y él contestó: «En realidad, no te felicitaba por la revista, 
sino por haber publicado con Alan Gelfand». Y tenía ra-
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zón: el verdadero honor de ese trabajo era haber trabaja-
do con Alan. Y lo sigue siendo: en cada proyecto en que 
colaboramos, es un privilegio trabajar con él.

Con todo esto, han quedado demostradas sin ninguna 
duda las tres hipótesis necesarias para obtener la conclu-
sión que queríamos enunciar: que el profesor Alan E. 
Gelfand es el candidato perfecto para ser doctor HC por 
la Universidad de Zaragoza.

Y, por todo ello, solo podemos finalizar esta laudatio, 
querido profesor Alan E. Gelfand, diciendo gracias:

—	Gracias por sus valiosas contribuciones a la Ciencia, 
a las Matemáticas, a la Estadística y al Análisis Baye-
siano.

—	Gracias por su apoyo y generosidad con nosotros, 
con el grupo de Modelos Estocásticos y con toda la 
Universidad de Zaragoza.

—	Gracias por aceptar su nombramiento como doctor 
HC por la Universidad de Zaragoza, en señal de 
reconocimiento a sus contribuciones.

En definitiva, querido profesor Alan E. Gelfand, sea 
muy bienvenido como nuevo ilustrado de esta nuestra uni-
versidad, desde ahora también su universidad.

Ana C. Cebrián
Gerardo Sanz





LAUDATIO
INVESTITURE CEREMONY  

FOR ALAN E. GELFAND  
AS DOCTOR HONORIS CAUSA 

It is a great honor for Professor Gerardo Sanz and for 
me to sponsor Professor Alan E. Gelfand on the occasion 
of his appointment as Doctor Honoris Causa by the 
University of Zaragoza. It is also an honor for the three 
proposing bodies, the Departments of Statistical Methods 
and Applied Economics, and the University Institute of 
Mathematics and its Applications, as well as for the Faculty 
of Sciences, which has also supported the proposal for 
this recognition.

According to the regulations governing the awarding 
of the Doctor Honoris Causa (HC) degree by the Uni-
versity of Zaragoza, this distinction is conferred upon 
individuals who have achieved exceptional prestige in re-
search and who embody universal values. In addition, the 
candidate’s connection with the University of Zaragoza is 
also considered. And, honestly, I cannot think of anyone 
who fulfills each and every one of these requirements 
better than Professor Alan E. Gelfand.
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To avoid any doubt, we can follow the usual mathe-
matical procedure, and formulate this as a theorem:  
we have three hypotheses, international prestige in re-
search, embodiment of universal values, and close con-
nection with the University of Zaragoza, and if we 
demonstrate these hypotheses, we reach the conclusion 
that Professor Alan E. Gelfand is the perfect candidate 
to be awarded doctor HC by the University of Zaragoza. 
The demonstration of these hypotheses is irrefutable, 
as I will now show.

Hypothesis 1: Scientific prestige

I must say that proving this thesis is very easy; however, 
doing so in just a few minutes is almost impossible, 
since it is difficult to summarize in such a short time the 
innumerable merits and awards of his academic career. 
Therefore, what follows is only a brief overview.

Born in New York, Alan E. Gelfand earned his under-
graduate degree in Mathematics at the City College of 
New York. He obtained his Ph.D. in Statistics from 
Stanford University under the supervision of Professor 
Herbert Solomon. He began his career at the University 
of Connecticut, where he worked for more than thirty 
years. In 2002, he joined Duke University, ranked sixth 
among U.S. universities, where he was appointed James 
B. Duke Professor of Statistical Science, the most pres-
tigious academic position at that institution.

His name will forever be linked to one of the most 
significant milestones in recent statistical history: the 
formalization of the use of Monte Carlo methods via 
Markov Chains (MCMC) in the context of Bayesian 
analysis. In 1990, together with Professor Adrian Smith, 
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Professor Alan E. Gelfand published the article «Sampling-
Based Approaches to Calculating Marginal Densities» in 
the Journal of the American Statistical Association (JASA), one 
of the most prestigious journals in the field. This article 
marked a turning point in modern statistical inference, 
as it made it possible to tackle problems that had pre-
viously been virtually intractable. What had been purely 
theoretical, thanks to Professor Alan E. Gelfand, became 
a practical, applicable and useful technique. Gibbs 
sampling, which has been a key algorithm in Bayesian 
research ever since, should be referred to as «Gelfand’s 
sampling», as some researchers say. That article has been 
cited more than 10,500 times.

Since then, he has made significant contributions to 
multiple areas, most notably Bayesian hierarchical model- 
ing, spatial statistics, and spatio-temporal modeling. His 
scientific productivity is extraordinary: he has published 
more than 350 articles in academic journals, 10 books 
and monographs, and supervised dozens of doctoral the-
sis. His work has been widely cited, and his influence has 
been fundamental in the expansion of Bayesian analysis. 
His book Hierarchical Modeling and Analysis for Spatial Data, 
co-authored with Professors Banerjee and Carlin, is con-
sidered one of the «Bibles» of Bayesian modeling, and 
they have recently published its third edition.

Professor Alan E. Gelfand has received numerous 
international distinctions for his research, to name just 
a few:

—	Samuel Wilks Memorial Award.
—	Distinguished Research Medal from ASA Section 

on Statistics and the Environment.
—	Elected Fellowship of the International Statistical 

Institute (IMS), the American Statistical Association 
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(ASA) and the International Society for Bayesian 
Analysis (ISBA).

—	Elected President of ISBA.
—	Chernoff Excellence Statistic Award.

He was recognized as the Tenth Most Cited Mathe-
matical Scientist in the World for the period 1991-2001 
(Science Watch) and currently ranks among the world’s top 
mathematicians in the 3rd edition of the Research.com 
rankings. Please note that this is only a brief overview, as 
his list of awards and distinctions is extensive.

Hypothesis 2: Embodiment of universal values

As we have just established, Professor Alan E. Gelfand’s 
research has made an essential contribution to the theo-
retical foundations of Bayesian analysis, but his influence 
and work extend well beyond this area. He has devoted 
an important part of his work to developing applications, 
using Bayesian techniques, to address problems of social 
interest, especially in environmental sciences, health, pol-
lution studies, and biodiversity; he has also worked on cli-
mate applications, developing models of great utility in 
monitoring climate change. There is no doubt that his 
research has helped to improve the world and the society 
where we live.

His universal values are further reflected in his gen-
erous commitment to mentoring young researchers 
and his extensive collaborations with diverse research 
groups. He has supervised more than 35 doctoral stu-
dents, and, in the words of one of them, he is what might 
be regarded as the definitive model of a thesis advisor. 
He has also established research collaborations across 
the world and all this with a generosity that has fostered 



19

not only professional relationships, but also lasting 
friendships. Proof of this is the presence here today of 
many leading international Bayesian statisticians, who 
have traveled from various parts of Spain, as well as from 
Rome, Milan, Southampton, and even across the Atlan-
tic from Washington, Texas, California, and North 
Carolina. All are gathered here in Zaragoza today to 
celebrate with him the conferral of his degree. This is 
irrefutable evidence of the great impact Alan has had 
on all of them, both as a researcher and as a person.

Hypothesis 3: Connection with the University of Zaragoza

Professor Alan E. Gelfand’s collaboration with the Uni-
versity of Zaragoza began in 2012, first with Professors 
Manuel Salvador, María Asunción Beamonte and Pilar 
Gargallo from the Economía Aplicada Department, and 
thereafter with the Faculty of Science. Since 2014, he has 
been part of the Grupo Modelos Estocásticos, led by Pro-
fessor Gerardo Sanz, thanks to Professor María Asunción 
Beamonte, who introduced him to the group. Within this 
framework, Professor Alan E. Gelfand has been part of the 
working team in five nationally funded projects. His in- 
fluence on this university is undeniable. Dennis Lindley, 
one of the great promoters of Bayesianism in the 20th cen-
tury, once said: «Inside every non-Bayesian there is a Bayes-
ian struggling to get out». Without a doubt, Professor Alan 
E. Gelfand has brought out the Bayesian in many research-
ers at University of Zaragoza, including myself of course. 
The result is that, thanks to his influence, there is now a 
significant node of Bayesian statisticians at this university.

Regarding the university’s projection abroad, all of 
Professor Alan E. Gelfand’s collaborations with the Uni-
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versity of Zaragoza have used Spanish data, often from 
Aragón, so that through his numerous publications and 
keynote talks, he has promoted both the region and the 
university worldwide.

He has also facilitated research stays at Duke for UZ 
professors, and he visits regularly our university. At this 
point, I must express the honor and pleasure it is to work 
with Alan, and I am sure that Jesús Asín, Jorge Castillo, 
and other researchers here today will agree with me. In 
each and every meeting with him, we learn something; 
in our work discussions, new ideas always emerge, proposed 
by him, and I would even say that his presence sparks 
better ideas from the rest of the team, the «Zaragoza 
team» as he calls us. Moreover, he fosters a collaborative 
environment where all ideas are heard and valued, not 
imposing hierarchies, even though his position would 
certainly allow it. This accessibility and humility, despite 
his many achievements, makes it easy to forget what an 
honor and privilege it is to work with one of the world’s 
leading mathematicians. It is therefore valuable to be 
reminded of this by others. I recall that after publishing 
our first article with him, a professor from another 
university congratulated me on that publication, and I 
said: «Yes, we are very happy, it’s my first article in JRSS», 
a prestigious journal. And he replied: «Actually, I wasn’t 
congratulating you for that, but for having published with 
Alan Gelfand». And he was right, the true honor of that 
work was having worked with Alan. And it remains so, in 
every project we undertake together, it is a privilege for us 
to work with him.

With all this, we have proven beyond any doubt the 
three hypotheses necessary to reach the conclusion we 
wanted to demonstrate: that Professor Alan E. Gelfand 
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is the perfect candidate to be awarded Doctor HC by 
the University of Zaragoza.

Thus, we can only conclude this laudatio, dear Professor 
Alan E. Gelfand, by saying thank you:

—	Thank you for your valuable contributions to 
Science, to Mathematics, to Statistics, and to Ba-
yesian analysis.

—	Thank you for your support and generosity toward 
us, toward the Modelos Estocásticos Group, and 
toward the entire University of Zaragoza.

—	Thank you for accepting your appointment as 
Doctor Honoris Causa by the University of Zara-
goza, as a token of recognition for your contribu-
tions.

In short, dear Professor Alan E. Gelfand, we warmly 
welcome you as a new ilustrado of our University, which 
from now on is also your University.

Ana C. Cebrián 
Gerardo Sanz





ALAN E. GELFAND

CEREMONIAL

Para la investidura
como doctor honoris causa 

por la Universidad de Zaragoza
del profesor

Serán sus padrinos académicos los profesores doctores:
Ana C. Cebrián 
Gerardo Sanz





Los componentes de la comitiva académica ocupan los 
lugares reservados a ellos en el estrado (el candidato se 
habrá quedado fuera del salón Paraninfo). Tras el Veni 
Creator, que se escucha en pie y con la cabeza descubierta, 
la Rectora dice:

—	Sedete et tegite caput.
(Sentaos y cubríos)

La Rectora ordena al secretario general la lectura del 
acuerdo por el que se propone la concesión del Grado 
honorífico.

—	Lege Studii Generalis Civitatis Caesaraugustanae senatus-
consultum.
(Lee el Acuerdo del Consejo de Gobierno de la Universidad 
de Zaragoza)

Realizada la lectura, la Rectora ordena a los padrinos:

—	Ite arcessite candidatum.
(Id a buscar al candidato)

Los padrinos, precedidos por los maceros, van a buscar 
al candidato. Acude este, destocado, acompañado de sus 
padrinos, y saluda a la Presidencia con una inclinación de 
cabeza en el momento en que es nombrado por el secre-
tario general. Repite el saludo al Claustro y se sitúan, en 
pie, junto a su sitio en el estrado.



26

Finalizada la presentación, les dice la Rectora:

—	Sedete.
(Sentaos)

Y, dirigiéndose a los padrinos:

—	Pronuntietur a patronis laus candidati.
(Hágase por los padrinos el elogio del candidato) 

La profesora de la Facultad de Ciencias Ana C. Cebrián 
ocupará la Cátedra y pronunciará el elogio del candidato.

Finalizado el elogio, la Rectora dice al Claustro y a los 
presentes:

—	Levate.
(Levantaos)

Y pregunta al Claustro:

—	Conceditisne ut Alan E. Gelfand Honoris Causa munia doc-
toris induatur?
(¿Estáis de acuerdo con que Alan E. Gelfand sea revestido con 
los atributos doctorales honoris causa?)

El Claustro responde:

—	Concedimus.
(Lo estamos)

La Rectora dice al candidato:

—	Auctoritate mihi concessa legibus Regni et Studii Generalis 
Civitatis Caesaraugustanae, tibi confero Gradum Doctoris 
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Honoris Causa. Patroni insignibus doctoralibus te vestient 
et eorum significationem explicabunt.

(Por la autoridad que me otorgan las leyes del Reino y de la 
Universidad de Zaragoza, te confiero el grado de doctor honoris 
causa. Tus padrinos te investirán con las insignias doctorales y 
te explicarán su significado)

Y advierte a los presentes:

—	Sedete.
(Sentaos)

Los padrinos y el candidato se disponen para la inves-
tidura, saludando con una inclinación de cabeza a la 
Presidencia. 

La madrina principal muestra a su candidato el birrete, 
mientras dice:

—	Accipe pileum quo non solum splendore ceteros praecedas, 
sed quo etiam tamquam Minervae casside ad certamen mu-
nitior sis.

(Recibe el birrete no solo para que sobresalgas de entre los 
demás, sino también para que estés mejor protegido en el com-
bate, como con el casco de Minerva)

Le impone el birrete.

Mostrándole el libro abierto, dicen (los dos padrinos):

—	En librum apertum ut scientiarum arcana reseres.
(He aquí el libro abierto, para que accedas a los secretos de las 
ciencias)

Mostrándoselo cerrado, dicen:
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—	En clausum ut eadem prout oporteat intimo pectore custodias.
(Helo cerrado, para que, según proceda, lo guardes en lo pro-
fundo del corazón)

Se lo entregan diciendo:

—	Do tibi facultatem legendi, intelligendi et interpretandi.
(Te doy la facultad de enseñar, de comprender y de inter-
pretar)

Padrinos y candidato se abrazan, vuelven a sus lugares y 
permanecen en pie.

Terminada la investidura del candidato, la Rectora dice a 
los restantes:

—	Levate.
(Levantaos)

Y dice al secretario general:

—	Lege promissum novo doctori.
(Lee el juramento al nuevo doctor)

El secretario general, mostrando los Estatutos de la Uni-
versidad de Zaragoza, pregunta al candidato:

—	Promittis observare et adimplere omnia et singula quae se-
quuntur?
(¿Prometes observar y cumplir todas y cada una de las cosas 
que siguen?)

El candidato responde:

—	Sic promitto et sic volo.
(Así prometo y quiero)
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Y sigue el secretario general:

—	Primo, semper et ubicumque fueris, iura et privilegia, ho-
norem Studii Generalis Civitatis Caesaraugustanae conser-
vabis et semper id iuvabis, favorem, auxilium et consilium 
praestabis in factis et negotiis universitatis quotiens fueris 
requisitus?

(Y, en primer lugar, siempre y doquier estuvieras, ¿guardarás 
siempre los derechos y privilegios y el honor de la Universidad 
de Zaragoza y la ayudarás siempre y le prestarás tu concurso, 
apoyo y consejo en los asuntos y negocios universitarios tantas 
veces cuantas fueras requerido?)

El doctorando contesta:

—	Sic promitto et sic volo.
(Así prometo y quiero)

La Rectora añade:

—	Accipio promissum vostrum. Studium Generale Civitatis 
Caesaraugustanae testis est et iudex erit si fidem decederes.
(Recibo tu promesa, la Universidad de Zaragoza es testigo y 
será juez si faltaras al compromiso)

El secretario general nombra al nuevo doctor, que se 
acerca a la Mesa Presidencial para que la Rectora le im-
ponga la Medalla y le entregue el Título.

Vuelve a su sitio en el estrado.

A continuación, la Rectora dice:

—	Sedete.
(Sentaos)
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La Rectora da la palabra al nuevo doctor.

—	Puede ocupar la Cátedra el Doctor Alan E. Gelfand.

El doctor honoris causa, acompañado por sus padrinos, 
ocupa la Cátedra y pronuncia su discurso.

Al finalizar la intervención del nuevo doctor, la Sra. Rec-
tora Magnífica toma la palabra.

Terminado su discurso, la Rectora dice:

—	Pongámonos en pie para entonar el Gaudeamus Igitur.

Terminado el Gaudeamus Igitur, la Rectora clausura el 
acto.



EL ASCENSO DE LA INFERENCIA BAYESIANA  
EN EL SIGLO XXI

Alan E. Gelfand

Rectora Magnífica de la Universidad de Zaragoza
Miembros del equipo rectoral y del Claustro
Distinguidos doctores
Señoras y señores

1. Introducción

Déjenme empezar agradeciendo a la profesora Ana 
Carmen Cebrián y al profesor Gerardo Sanz Saiz que me 
hayan propuesto para este honor tan excepcional y, tam-
bién, por todo el esfuerzo que han puesto en ello. Tam-
bién quisiera dar las gracias a mi esposa, la profesora 
María Asunción Beamonte, quien no solo ha sido una 
colaboradora en el aspecto investigador, sino que tam-
bién me ha ayudado a establecer las relaciones en el mun-
do investigador que tengo en esta estimada institución. 
Por último, permítanme extender mi agradecimiento al 
profesor Jesús Asín y al profesor Jorge Castillo Mateo, 
miembros integrantes de nuestro exitoso equipo inves-
tigador en el Departamento de Métodos Estadísticos. 
Todos vosotros me habéis ayudado a comenzar esta muy 
especial parte de mi carrera investigadora, aquí en la Uni-
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versidad de Zaragoza. Al final de este discurso de acepta-
ción, ofreceré más detalles acerca de cuán satisfactorio ha 
sido este período de más de diez años.

¿De qué trata este discurso? Reconozco que solamente 
una pequeña parte de esta audiencia es conocedora del 
campo de la estadística, mucho menos del paradigma de la 
inferencia en estadística bayesiana y su reciente evolución. 
Mi discurso se presentará a un nivel accesible para seguir el 
camino de su evolución. Para quienes ya son conocedores, 
por favor, disculpen mi evidentemente subjetivo punto de 
vista, que va a reflejar mi sesgo y, al mismo tiempo, me ex-
cuso de antemano por cualquier desafortunada omisión.

Todo el mundo ha estado expuesto a la estadística, a 
veces de forma negativa, quizá refiriéndose a esta como 
estasadística.1 Todo el mundo es consciente de los abusos 
que se han cometido en nombre de la estadística. No obs-
tante, la estadística se ha convertido en un campo esen-
cial para la comunidad investigadora en todas las áreas de 
la investigación científica. En estos tiempos, raramente 
basta con inferir conclusiones sin el soporte de datos. 
Además, cada vez se recogen más y más datos y todos esta-
mos familiarizados con las expresiones ciencia de datos y 
grandes bases de datos.2 Para una determinada área de la 
investigación, el papel de los estadísticos es facilitar la ex-
tracción de los resultados más potentes que sea posible, a 
partir de los datos que se han recogido. Y, de nuevo, con 
cantidades masivas de datos, este papel es cada vez más 
crítico y vital. La estadística no es un campo glamuroso. 
Habitualmente, los estadísticos hacen su trabajo en la 
sombra, en segundo plano, con hallazgos que son presen-

1	  En el idioma original (inglés), Sadistics.
2	  En inglés, Data Science y Big Data, respectivamente.
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tados por los especialistas en la investigación del campo 
que se trate. Sin embargo, hay una frase famosa atribuida 
a John Tukey, uno de los más reconocidos estadísticos de 
la segunda mitad del siglo xx: «Los estadísticos trabajan 
en el patio trasero de todo el mundo».

La contribución del pensamiento y análisis estadísticos 
se ha manifestado de manera sustancial en investigacio-
nes importantes en áreas tales como la medicina, los pro-
ductos farmacéuticos, los negocios y la economía, las 
ciencias sociales y la psicología, los procesos medioam-
bientales y ecológicos, la ingeniería y las ciencias natura-
les. Los tipos de problemas abarcados son la comparación 
de poblaciones, el diseño de experimentos, la asociación, 
la regresión y la causalidad, los datos de series temporales 
y la recopilación secuencial de datos, los datos multiva-
riantes y, los más queridos para mí, los datos espaciales y 
espaciotemporales.

2. El paradigma bayesiano

¿Dónde encaja la inferencia bayesiana en este panora-
ma? Retrocedamos un poco para intentar explicar qué es 
la «inferencia bayesiana» y en qué se diferencia de lo que 
suele denominarse «inferencia clásica» o «frecuentista». 
El origen de la inferencia bayesiana se remonta al reve-
rendo Thomas Bayes, ministro presbiteriano inglés, ade-
más de estadístico y filósofo. En particular, lo que se cono-
ce como el «teorema o regla de Bayes» se desarrolló en la 
década de 1750, pero apareció impreso por primera vez 
en 1763, gracias a Richard Price, amigo de Bayes. Por lo 
tanto, no es tan antiguo como esta eminente institución, 
pero sí lo es en el firmamento estadístico.

Bayes pensaba en términos de probabilidades y, en par-
ticular, en la idea de las probabilidades condicionadas. 
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En su forma más simple, dados dos eventos relacionados, 
¿cómo cambia la probabilidad de que ocurra uno si el otro 
ya ha ocurrido? Permítanme ofrecer un ejemplo elemen-
tal. Supongamos que tenemos una baraja de 52 cartas:  
13 picas, 13 corazones, 13 diamantes y 13 tréboles. Supon-
gamos que sacamos una carta al azar, pero no la miramos. 
¿Cuál es la probabilidad de que sea una pica (suceso A)? 
Respondemos inmediatamente 1/4. Sin embargo, supon-
gamos que sacamos una segunda carta de la baraja. La ob-
servamos y es una pica: suceso B. Podemos preguntarnos 
de nuevo cuál es la probabilidad de que la primera carta 
sea una pica. ¿Esta nueva información ha cambiado la pro-
babilidad? De ser así, ¿cuál es la respuesta correcta?

Buscamos P(A | B). Esta notación significa la probabi-
lidad de que ocurra el suceso A, dado que ocurrió el su-
ceso B. Bayes observó que podríamos calcular:

P(A | B) = P(B | A) P(A) / P(B), 

ya que 

P(A | B) P(B) = P(B | A) P(A) = P(A & B). 

Además, 

P(B) = P(B & A) + P(B & no A). 

Entonces, directamente:

P(A/B)  =  
(12/51) × (1/4)

(12/51) × (1/4) + (13/51) × (3/4)
=  12/51

¿Cómo se convirtió un cálculo de probabilidad tan 
simple en un paradigma de inferencia? Supongamos que 
reemplazamos A y B por las variables aleatorias X e Y. 
Entonces, obtenemos 

f(X | Y) = f(Y | X) f(X) / f(Y);
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es decir, la distribución de la variable X dada la variable Y. 
Yendo un paso más allá, supongamos que consideramos 
Y como los datos que hemos observado y X como lo que 
desconocemos sobre la distribución de los datos. Enton-
ces, obtenemos: 

f(desconocidos | datos) =  
f(datos | desconocidos) f(desconocidos) / f(datos) ∝3

f(datos | desconocidos) f(desconocidos)4, 5

La proporcionalidad surge porque el término del de-
nominador en la línea central —f(datos)— no depende 
de desconocidos. Lo que vemos en esta ecuación, esta espe-
cificación del modelo, es un mecanismo tal que el primer 
término de la igualdad nos permite aprender/inferir so-
bre lo que no conocemos a partir de lo que hemos obser-
vado. Esta es la esencia de la inferencia bayesiana. De he-
cho, parece completamente natural; es nuestra forma de 
vivir la vida empíricamente. ¡Tomamos decisiones basán-
donos en lo que hemos visto!

Además, supongamos que escribimos esa ecuación en 
la forma:

f(datos & desconocidos) =  
f(datos |desconocidos) f(desconocidos) =  

f(desconocidos | datos) f(datos)

Desde el término en la primera línea, vemos que se 
proporciona una especificación para la aleatoriedad con-
junta de lo que desconocemos y lo que observamos. La 
forma central es lo que podríamos llamar generativa. Des-

3	 El símbolo ∝ indica proporcionalidad.
4	 Desconocidos en el idioma original (inglés) es unknowns.
5	 Expresión original en inglés: f(unknowns | data) = f(data | unknowns) 

f(unknowns) / f(data) ∝ f(data | unknowns) f(unknowns).
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cribe cómo, por ejemplo, la Madre Naturaleza, o su dei-
dad favorita, elige una realización aleatoria de lo que des-
conocemos. Entonces, lo que vemos, como datos, es una 
realización aleatoria dados los desconocidos que fueron 
elegidos. La parte de la línea inferior es inferencial. Mues-
tra la revisión de nuestras creencias, proporcionando una 
distribución para clarificar cómo actualizamos la inferen-
cia sobre lo que desconocemos, dado lo que hemos visto. 
El último término, f(datos), no se tratará aquí, pero, con-
ceptualmente, nos permite ver cómo de buena es nuestra 
especificación del modelo y compararla con otras mode-
lizaciones con especificaciones diferentes.

Quizá se pregunten cuál es el enfoque clásico o fre-
cuentista para la inferencia. El enfoque clásico, o al me-
nos un enfoque clásico sensato, solo considera f(datos | 
desconocidos), la llamada «verosimilitud»; es decir, intenta 
encontrar valores de los desconocidos que con mayor proba-
bilidad hayan generado los datos que se han observado. 
¿No parece que este razonamiento va en la dirección con-
traria? Se pide que se investigue lo que se podría haber 
visto dado lo que se desconoce. Sin embargo, este para-
digma dominó la relativamente joven disciplina de la 
inferencia estadística durante prácticamente todo el si-
glo xx, desde los padres fundadores de la materia, como 
R. A. Fisher, junto con, quizá, Karl Pearson, Jerzy Neyman, 
David Cox, C. R. Rao y P. C. Mahalanobis. Incluso hoy 
día sigue dominándola.

En el contexto del análisis de datos con un modelo 
dado, habitualmente existen dos tipos de desconocidos 
con diferentes objetivos de inferencia. Un tipo de desco-
nocidos se denominan generalmente «parámetros» y la 
inferencia asociada se denomina «estimación». Los pará-
metros son cantidades artificiales incorporadas a un mo-
delo explicativo, como, por ejemplo, los coeficientes de 
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un modelo de regresión. No son reales, sino constructos 
que proporcionan un mecanismo para capturar la expli-
cación del modelo. Para diferentes especificaciones del 
modelo, no significan lo mismo ni son comparables. Esto 
no pretende restarle valor a la estimación de parámetros, 
sino aclarar su función. El otro tipo de desconocidos es 
una posible observación no recopilada, pero sobre la 
que se desea inferir. La inferencia asociada se denomina 
«predicción». Estos desconocidos son cantidades reales 
que toman valores en el espacio de los datos. La predic-
ción de una temperatura, el valor de una propiedad, el 
peso al nacer, etc., significan lo mismo independiente-
mente del modelo elegido; por lo tanto, los modelos pue-
den compararse directamente en términos de rendi-
miento predictivo. El uso de la predicción en el análisis 
de datos moderno es de vital importancia.

Vale la pena añadir algunas palabras más sobre la di-
ferencia entre el enfoque clásico y el enfoque bayesiano. 
El enfoque clásico suele limitar al analista de datos a ob-
servar algunas características de f(datos / desconocidos), a 
calcular estadísticos como funciones de los datos y a utili-
zarlos para comprender los desconocidos en la verosimili-
tud. ¿Qué estadísticos emplearemos y cómo? ¿Qué suce-
de si tenemos varias opciones de estadísticos para utilizar? 
Sus distribuciones dependen de los desconocidos y, excepto 
en casos simples, no suelen estar disponibles explícita-
mente. ¿Y qué sucede si no existen estadísticos propues-
tos en la bibliografía que podamos usar?

En cualquier caso, habitualmente se recurre a resulta-
dos asintóticos para obtener una distribución aproxima-
da de los estadísticos disponibles. ¿Cómo sabemos cuán-
do estas aproximaciones asintóticas son suficientemente 
buenas y cuándo son adecuadas? Estas aproximaciones 
dependen de datos que nunca observaremos. Más bien 
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tenemos los datos que tenemos; nunca podremos tener 
una cantidad infinita de datos, por lo que, cuando adop-
tamos esta aproximación, no sabemos cómo de bien lo 
estamos haciendo. Además, incluso en el mejor de los ca-
sos, la inferencia frecuentista es limitada. Podríamos ob-
tener una buena estimación puntual, así como algún tipo 
de estimación por intervalo y cierta medida de la incerti-
dumbre para esta cantidad desconocida, pero hasta allí 
nos lleva la inferencia clásica.

Por el contrario, la inferencia bayesiana proporciona 
una distribución completa, la denominada «distribución 
a posteriori» para cualquier desconocido. Esto es lo mejor 
que se podría esperar, ya que toda la inferencia estará 
disponible. Podemos obtener estimaciones puntuales 
para los desconocidos; por ejemplo, la media, la mediana o 
la moda. Podemos obtener estimaciones de incertidum-
bre, por ejemplo, para varianzas o rangos. También pode-
mos proporcionar cualquier afirmación de probabilidad 
que deseemos con respecto a los desconocidos; por ejem-
plo, la probabilidad a posteriori de que se encuentre en un 
conjunto específico. Lo más importante es que esta infe-
rencia es exacta. Bajo el modelo que hemos especificado, 
se proporciona con la precisión y exactitud adecuadas. 
No hay dependencia de resultados asintóticos ni de los 
datos futuros que se puedan recoger. ¡Y no presenta la 
incomodidad de depender de resultados asintóticos!

¿Por qué la inferencia bayesiana no surgió como el pa-
radigma dominante? ¿Por qué se ignoró, en general, has-
ta prácticamente la última parte del siglo xx? La respuesta 
inmediata es la necesidad de especificar f(desconocidos) la 
distribución de lo que desconocemos, lo que se denomi-
na distribución a priori. Dado que diferentes personas po-
drían ofrecer diferentes versiones de f(desconocidos), sur-
girían diferentes inferencias a posteriori. La inferencia se 
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vuelve subjetiva. ¿Cómo podemos informar con seguri-
dad sobre resultados que dependen de la distribución a 
priori que elegimos? Además, a medida que el proceso 
que estamos estudiando se vuelve más complejo, la di-
mensión del espacio de desconocidos se hace cada vez ma-
yor. La dimensión de la distribución a priori se vuelve muy 
grande. Podría parecer que la sensibilidad a la especifi-
cación de la distribución a priori es un desafío imposible. 
De hecho, con esta subjetividad, una crítica insistente al 
análisis de datos bayesiano es: ¿cómo puede ser conside-
rada una buena ciencia?

Si bien es cierto que la necesidad de adoptar una dis-
tribución a priori hace que la inferencia bayesiana sea 
inherentemente subjetiva, esto no tiene por qué ser un 
desafío práctico serio. En algunos casos, podemos tener 
información útil sobre los desconocidos que podemos in-
corporar a la especificación a priori. Esta información 
puede surgir del conocimiento previo sobre el proceso 
en estudio, como, por ejemplo, no adoptar distribuciones 
a priori que tenderían a generar datos poco realistas. Al-
ternativamente, quizá los datos a priori recopilados sobre 
el proceso hayan revelado dónde es probable que se en-
cuentren los desconocidos antes de analizar los nuevos da-
tos. Otra posibilidad es la obtención de distribuciones a 
priori; es decir, un procedimiento diseñado para utilizar 
expertos que ayuden a proporcionar estas distribuciones 
a priori adecuadamente informativas.

Sin embargo, en el siglo xxi, estos enfoques ya no se 
suelen utilizar. En su lugar, preferimos dejar que «los datos 
hablen por sí mismos». Adoptamos las llamadas a priori dé-
biles, vagas y no informativas para que los datos dominen la 
inferencia en la distribución a posteriori. Diferentes mode-
lizadores pueden preferir/sentirse cómodos con diferen-
tes opciones de estas distribuciones a priori débiles y, en 
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este sentido, es responsabilidad del analista bayesiano de 
datos implementar algún análisis de sensibilidad de estas 
distribuciones a priori. No pretendo ser superficial en este 
sentido; sin embargo, al aplicarlos a conjuntos de datos 
muy grandes, el número de parámetros aumenta. Por lo 
tanto, implementar dicho análisis se vuelve muy exigente 
y, por lo general, revela poca sensibilidad en la inferencia.

Proporcionar nombres de forma muy selectiva y a ries-
go de ofender a algunos, a medida que la inferencia baye-
siana evolucionó desde finales del siglo xx hasta princi-
pios del siglo xxi, nos dejaría una lista de investigadores 
muy influyentes, que incluiría a sir Adrian F. M. Smith, 
junto con los profesores James Berger (Universidad 
Duke), Mike West (Universidad Duke), Persi Diaconis 
(Universidad Stanford), Donald Rubin (Universidad de 
Harvard, en aquel entonces), Christian Robert (Universi-
dad París-Dauphine) y Adrian Raftery (Universidad de 
Washington). Actualmente, tres investigadores bayesia-
nos muy citados son los profesores Andrew Gelman (Uni-
versidad de Columbia) en ciencias sociales, Michael I. 
Jordan (Universidad de California, Berkeley) en aprendi-
zaje automático y David Dunson (Universidad Duke) en 
métodos para datos complejos de alta dimensión.

España alberga un rico pasado y presente de bayesia-
nos fundacionales. Además, en el siglo xxi, encontramos 
aquí cada vez más investigadores centrados en la modeli-
zación jerárquica. Los primeros esfuerzos se remontan al 
grupo de la Universidad de Valencia, que incluía al profe-
sor José Bernardo, fundador de las reuniones «Valencia», 
de éxito internacional, que se celebraron cada cuatro 
años hasta 2010. Una de las líderes durante ese período 
fue la profesora M. J. (Susie) Bayarri. La tradición bayesia-
na continúa en Valencia, con la participación de los pro-
fesores Antonio Manuel López Quílez, Carmen Armero, 
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David Conesa y Anabel Forte. Un grupo bayesiano, ante-
riormente bastante activo, se encontraba en Granada, di-
rigido por los profesores Elías Moreno y F. Javier Girón. 
Una lista parcial de otros investigadores bayesianos de re-
nombre internacional incluye a los profesores David Ríos 
Insua, Manuel Salvador, María Dolores (Lola) Ugarte, 
María Eugenia Castellanos, Gonzalo García-Donato, Virgi-
lio Gómez Rubio y Miguel Ángel Gómez-Villegas.

En una mirada retrospectiva, Dennis Lindley fue uno 
de los fundadores, defensores y desarrolladores del para-
digma de inferencia bayesiano, que también incluyó a 
Leonard J. Savage, Morris DeGroot, George Box, Arnold 
Zellner y I. J. Good. Cabe destacar que Lindley predijo 
que el siglo xxi sería bayesiano, debido a su claro atractivo 
inferencial. Sin embargo, ¿cuál es la verdadera razón que 
frenó el paradigma bayesiano en el siglo xx, pero que aho-
ra le ha permitido consolidarse como el enfoque predi-
lecto para la investigación de procesos complejos en el 
siglo xxi? La respuesta es la computación.

Un análisis de la expresión para la distribución a poste-
riori de los desconocidos revela que solo está disponible has-
ta la proporcionalidad. En consecuencia, la inferencia no 
es posible, ya que el área bajo la distribución debe norma-
lizarse a uno. No se pueden calcular las probabilidades ni 
las esperanzas. Y, salvo en entornos bastante simples, la 
constante necesaria, f(datos), no se puede obtener explí-
citamente. Para calcularlo, se requiere integrar sobre el 
espacio de los desconocidos. A medida que la dimensión de 
los desconocidos aumenta, como ocurre con los problemas 
de verdadero interés en el siglo xxi, esta integración se 
vuelve inviable. Por lo tanto, hasta 1990, la inferencia ba-
yesiana se encontraba estancada. Ofrecía un paradigma 
de inferencia muy atractivo, pero se limitaba a los llama-
dos problemas «de juguete».
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Pero entonces, en 1990, se produjo el mayor avance 
computacional. Tuve la fortuna de ser coautor (junto con el 
profesor Adrian F. M. Smith) del artículo seminal que abrió 
las puertas a este avance (Gelfand y Smith, 1990). El enfo-
que, conocido como muestreo de Gibbs (Gibbs sampling) y 
Markov chain Monte Carlo (MCMC), se ha convertido en la 
herramienta más destacada para implementar el análisis 
bayesiano y, posiblemente, por sí solo, impulsó el auge revo-
lucionario de la inferencia bayesiana en el siglo xxi.

¿Cuál es la idea básica? Reemplazar la integración, que 
no es factible, por el muestreo. El muestreo es la idea 
fundamental en estadística; entendemos que, cuanto más 
muestreamos a una población, mejor aprendemos sobre 
ella (de hecho, este es el pensamiento frecuentista están-
dar). Por lo tanto, la idea es que el muestreo de Gibbs y 
MCMC proporcionan un mecanismo para muestrear un 
número arbitrario de realizaciones de la distribución a 
posteriori f(desconocidos | datos). La verdadera novedad para 
posibilitarlo fue crear y muestrear una cadena de Márkov 
cuya distribución estacionaria o límite es la distribución a 
posteriori deseada. Una vez que la cadena fuera esencial-
mente estacionaria, se podían recolectar tantas muestras 
de la distribución a posteriori como se deseara. Con un 
número arbitrario de esas muestras, podríamos conocer/
aprender suficientemente bien sobre cualquier caracte-
rística de esa distribución, obteniendo el máximo benefi-
cio del paradigma de inferencia bayesiano. Casualmente, 
cuando nos dimos cuenta del potencial de este avance 
computacional, la comunidad investigadora experimen-
taba un drástico aumento en la disponibilidad, a precio 
económico, de capacidad informática de alta velocidad 
que se requería para implementar el necesario muestreo.

Evidentemente, este avance se convirtió en una bendi-
ción para los probabilistas, que han continuado perfeccio-
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nando las implementaciones; para los especialistas en in-
formática, quienes han desarrollado algoritmos cada vez 
más eficientes para el ajuste de modelos utilizando el 
muestreo de Gibbs y MCMC, y lo más importante, para mí 
y para todos los modelizadores, fue que apreciamos la libe-
ración que esta estrategia de ajuste de modelos nos brinda-
ba. Se podían ajustar los modelos que se quisieran, NO 
solo los modelos para los que existía teoría asintótica. De 
hecho, desde 1990, se han abierto las compuertas, y el al-
cance y tamaño de los modelos que se emplean actualmen-
te en todo el mundo de las aplicaciones se ha vuelto enor-
me. Los tradicionalistas temen que los modelos se hayan 
vuelto gigantescos y que pierdan la elegancia de las especi-
ficaciones más simples. Es cierto que los modelos pueden 
ser demasiado grandes para que los soporten los datos y 
esta herramienta puede fomentar el sobreajuste de los mo-
delos a los datos disponibles. Sin embargo, el objetivo es, 
una vez más, explorar modelos flexibles para comprender 
las características de los procesos complejos. Científica-
mente, esto es tan valioso como se podría esperar, y evitar 
modelos que sean demasiado grandes se convierte en una 
componente del proceso de selección de modelos.

Cabe destacar que, a medida que la tecnología avanza, 
han surgido otras estrategias de ajuste de modelos, como 
la aproximación integrada de Laplace anidada (INLA), 
que introduce la aproximación integral; la computación 
bayesiana aproximada (ABC), que emplea simulación ha-
cia delante, y el método bayesiano variacional, que reem-
plaza la integración por la optimización. En muchas apli-
caciones, estos enfoques pueden ser más adecuados o 
eficientes, por lo que han sido reconocidos como útiles 
para ciertos tipos de problemas. Sin embargo, actualmen-
te, el muestreo de Gibbs y MCMC siguen siendo la herra-
mienta más utilizada en esta nueva era bayesiana.
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3. Modelización jerárquica

Para apreciar mejor cómo se emplea el paradigma en 
entornos complejos, es útil extender el teorema de Bayes 
a una forma jerárquica o multinivel:

f(datos | proceso, desconocidos1) f(proceso | desconocidos2) 
f(desconocidos1, desconocidos2)

Lo que hemos hecho es introducir el proceso de inte-
rés como una componente de la modelización y recono-
cer que los desconocidos2 guían el proceso, y el proceso, 
junto con un conjunto adicional de desconocidos1, dirigen 
los datos que observamos durante el proceso. La inferen-
cia que perseguimos es la distribución a posteriori f(proceso, 
desconocidos1, desconocidos2 | datos), ya que, como se ha ex-
plicado anteriormente, la distribución a posteriori permite 
una inferencia completa. La forma justifica la denomina-
ción de «jerárquica» o «multinivel».

Esta expresión parece relativamente inocua, pero no 
debe subestimarse su alcance. No se ha dicho nada sobre 
la naturaleza de la especificación de los datos o la especi-
ficación del proceso. Estos pueden ser tan ricos como lo 
justifique la recopilación de datos, tan flexibles como los 
aspectos del proceso que se busca capturar. Dichos as-
pectos se desarrollarán someramente en el siguiente pá-
rrafo. Es importante tener en cuenta que tanto la espe-
cificación de datos como la especificación del proceso 
son aproximaciones y no son «correctos». Tienen incerti-
dumbre, tienen desconocidos. Se espera que sean útiles y, 
en cualquier caso, se suministran anticipando la variabi-
lidad en respuesta a las entradas.

Profundizando, la distribución conjunta en el lado iz-
quierdo se proporciona en términos de tres partes en el 
lado derecho. Estas partes pueden ser más fáciles de for-
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malizar individualmente, en lugar de pensar en toda la 
distribución conjunta. Además, cada una de estas partes 
puede ser bastante compleja; por ejemplo, la relación en-
tre datos y procesos puede depender de muchas cosas. 
Puede ser diferente para diferentes tipos de datos. Para el 
modelo del proceso, puede haber aspectos espaciales o 
temporales que sugieren que la modelización podría de-
pender de dónde y cuándo ocurrió el proceso. La buena 
noticia es que podemos utilizar el condicionamiento apro-
piado para capturar estos aspectos de manera sencilla. Las 
ventajas de esta forma de pensar sobre la modelización 
incluyen: (i) la capacidad de construir modelos complejos 
a partir de relaciones condicionales simples. No necesita-
mos conceptualizar una especificación integrada para el 
problema, solo las componentes que se vincularán a través 
de modelos gráficos dirigidos: nodos y flechas; (ii) pode-
mos relajar los requisitos habituales que insisten en datos 
independientes. La independencia condicional es sufi-
ciente. Normalmente, introducimos la dependencia en 
una segunda o tercera etapa de la modelización que, de 
forma marginal, introduce asociación en los datos; (iii) po-
demos acomodar diferentes tipos de datos dentro del aná-
lisis, así como los «datos» que se obtienen de, digamos, un 
modelo computacional; (iv) asociando aleatoriedad a lo 
que observamos y a lo que no observamos, construimos 
una especificación completamente bayesiana. La unifica-
ción de la inferencia proporcionada por el paradigma ba-
yesiano nos lleva inmediatamente a mirar hacia la distri-
bución a posteriori de todo lo que no observamos dado 
todo lo que sí observamos. Aunque tal distribución será de 
gran dimensión y analíticamente intratable, podemos 
aprovechar las herramientas de cálculo bayesiano, descri-
tas brevemente con anterioridad, para ajustar estos mode-
los y proporcionar la inferencia deseada.
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Un atractivo particular de este enfoque es que permi-
te la introducción de todas las fuentes de información al 
definir la modelización —mecanicista, teórica y empíri-
ca (que puede haber surgido de experimentos diseña-
dos)—. Otro atractivo es la flexibilidad. Prevemos inves-
tigar diferentes especificaciones para seleccionar un 
modelo general que funcione bien, tanto en estimación 
como en predicción. El enfoque cambia de un debate 
sobre qué procedimiento inferencial adoptar a poner el 
foco en el desarrollo de modelos que logren una integra-
ción satisfactoria del conocimiento.

En general, lo anterior es un cambio notable que se ha 
producido en el panorama de la recogida de datos en 
nuestra transición al siglo xxi. En los últimos tiempos, se 
observa un crecimiento notable en la recopilación de da-
tos, obteniéndose conjuntos de datos de enorme tamaño. 
Además, ha habido un cambio hacia el examen de datos 
observacionales, en lugar de limitarse a datos obtenidos 
de experimentos cuidadosamente diseñados. Por su dise-
ño, estos últimos imponen restricciones sobre qué reali-
zaciones del proceso podemos esperar encontrar, lo que 
limita nuestra capacidad de comprender satisfactoria-
mente el proceso. Los primeros, sin embargo, proporcio-
nan realizaciones sin filtrar del proceso. Como se indicó 
anteriormente, esto ha llevado a un aumento de análisis 
de sistemas complejos que utilizan dichos datos, lo que 
requiere la síntesis de múltiples fuentes de información 
(empírica, teórica, física, etc.), que necesitan el desarro-
llo de los modelos multinivel. La modelización estocásti-
ca nos permite suministrar especificaciones para estas 
realizaciones y ver qué tan bien podemos estimar y prede-
cir el comportamiento del proceso.

Permítanme ofrecer algunas palabras más sobre la mo-
delización jerárquica o multinivel, ya que soy un miem-
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bro devoto de la modelización estocástica. Este es el mun-
do que ha cambiado drásticamente el papel del estadístico. 
Este es el mundo que ha fomentado el trabajo investiga-
dor en equipo, haciendo del estadístico un participante 
integral en la investigación basada en equipos: un partici-
pante en la formulación de las preguntas para investigar, 
en la determinación de los datos necesarios para investi-
gar estas preguntas, en el desarrollo de modelos para eva-
luar esas preguntas, en el desarrollo de estrategias para 
ajustar esos modelos y en el análisis y resumen de la infe-
rencia resultante con esas especificaciones. Hemos llega-
do a un mundo nuevo y apasionante para la estadística 
moderna.

El rango de las aplicaciones de la modelización jerár-
quica abarca todas las ramas científicas, tal y como se ha 
señalado en la introducción; por ejemplo, las ciencias 
biomédicas y de la salud, la economía y las finanzas, el 
medio ambiente y la ecología, la ingeniería y las ciencias 
naturales, las ciencias políticas y sociales. La modeliza-
ción jerárquica ha tomado el control del panorama de la 
modelización estocástica contemporánea. Aunque el aná-
lisis de tales modelos puede ser intentado a través de en-
foques no bayesianos, el paradigma bayesiano permite la 
inferencia exacta y la adecuada evaluación de la incerti-
dumbre dentro de la especificación dada. Finalmente, el 
obstáculo del cálculo ha sido superado. Los ya menciona-
dos muestreo de Gibbs y MCMC, pero también el mues-
treo de importancia secuencial (sequential importance sam-
pling), filtros de partículas (particle filters) y aprendizaje de 
partículas (particle learning), así como INLA, ABC, y Bayes 
variacional (variational Bayes), han desatado todo el poder 
de dicha modelización.

«Modelización jerárquica», como ilustra la formula-
ción general anterior, es una expresión muy amplia que 
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se refiere a una amplia gama de especificaciones de mode-
los. Sin entrar en complejas formalidades, se incluyen mo-
delos de efectos aleatorios, modelos de coeficientes alea-
torios, modelos de componentes de varianza, modelos de 
efectos mixtos, modelos de variables latentes, modelos 
de datos faltantes y modelos espacio-estado. La caracterís-
tica clave es que los modelos jerárquicos son modelos esta-
dísticos que ofrecen un marco formal para el análisis, con 
una complejidad de estructura que coincida con el siste-
ma que se está estudiando.

En los primeros tiempos, la modelización jerárquica o 
multinivel se refería a estructuras «anidadas»; por ejem-
plo, alumnos anidados en clases; clases anidadas dentro 
de escuelas o casas, a su vez anidadas en barrios; barrios 
anidados dentro de las ciudades. Sin embargo, hoy día, 
este tipo de modelización se ha extendido a la heteroge-
neidad; por ejemplo, en formas de regresión, es decir, la 
relación general. Además, pueden capturar la heteroge-
neidad modelizando varianzas/incertidumbre; por ejem-
plo, la variabilidad en los precios de la vivienda que cam-
bia de un barrio a otro. Pueden capturar dependencias 
en los datos, es decir, posiblemente complejas dependen-
cias en los resultados a lo largo del tiempo, o del espacio 
o sobre el contexto; por ejemplo, los precios de las vi-
viendas dentro de un vecindario tienden a ser similares. 
Pueden modelizar la contextualidad, macrorrelaciones 
(por ejemplo, tasas de interés y producto nacional bruto) 
y microrrelaciones (por ejemplo, los precios individuales 
de vivienda que dependerán de las características indivi-
duales de la propiedad, así como de las características del 
vecindario).

Vale la pena agregar algunas palabras que conecten la 
inferencia bayesiana con el aprendizaje automático (ma-
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chine learning). El aprendizaje automático generalmente 
considera diferentes enfoques de aprendizaje, incluidos 
el no supervisado, el supervisado, el semisupervisado o 
refuerzo, con aplicación a regresión, clasificación y agru-
pamiento. El trabajo inicial fue determinista, realizando 
optimizaciones adecuadas de las funciones de pérdida 
objetivas, a menudo con algunos desconocidos fijos, para 
obtener predicciones. Está claro que este trabajo no es 
adecuado, ya que se necesita incorporar la incertidum-
bre. Por ello, la inferencia bayesiana desempeña un pa-
pel crucial en el aprendizaje automático, proporcionan-
do un marco probabilístico para el razonamiento bajo 
incertidumbre, mejorando la precisión e interpretabili-
dad del modelo. De forma explícita, representando las 
dependencias entre variables e incorporando informa-
ción probabilística, las redes bayesianas permiten una 
modelización más satisfactoria de los sistemas complejos, 
lo que permite que los algoritmos de aprendizaje auto-
mático, como se ha mencionado anteriormente, generen 
predicciones y decisiones mejor informadas. Como ejem-
plo, la muy utilizada terminología de aprendizaje profun-
do (deep learning) se refiere a la rama de aprendizaje auto-
mático que se basa en redes neuronales artificiales; es 
decir, modelos gráficos (versiones más grandes de mode-
los jerárquicos), con múltiples capas, de ahí el término 
«profundo» (deep), que incorpora entradas y activaciones 
adecuadas.

De este modo, surgió el aprendizaje automático pro-
babilístico, lo que esencialmente significó incorporar las 
tareas mencionadas anteriormente dentro de un marco 
probabilístico, esencialmente un marco bayesiano, lo que 
ha permitido el desarrollo de garantías de desempeño 
probabilísticas y la cuantificación de la incertidumbre, 
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proporcionando límites de error y distribuciones para la 
predicción. El resultado es que la inferencia bayesiana se 
ha vuelto esencial en el trabajo moderno del aprendizaje 
automático y la inteligencia artificial, ofreciendo una me-
todología robusta para el razonamiento probabilístico y 
la cuantificación de la incertidumbre. Una muy buena 
introducción al aprendizaje automático probabilístico, 
particularmente a la revolución del aprendizaje profun-
do, se presenta en el texto premiado de Kevin Murphy de 
2012 (extenso, con 1200 páginas), con continuación en 
dos volúmenes en 2022 (más de 1600 páginas). El desa-
rrollo de Murphy se hace enteramente a través de la lente 
unificadora del modelado probabilístico y la toma de de-
cisiones bayesiana.

Aquí expreso mi último pensamiento sobre el futuro 
de la estadística como disciplina. Aunque la ciencia de 
datos está guiada desde la estadística, ha habido un movi-
miento para incorporarla bajo ese gran paraguas, junto 
con campos como la informática, la ingeniería informáti-
ca y la computación. La estadística desempeña un papel 
vital en estos campos, pero creo que, al mismo tiempo, es 
fundamental que la estadística continúe su trabajo como 
campo independiente. Lo que ofrece la estadística es una 
investigación basada en hipótesis, más que lanzar algorit-
mos a grandes conjuntos de datos. Ofrece la oportunidad 
de modelar cuidadosamente procesos complejos y estruc-
turas, en lugar de adoptar una metodología de aprendi-
zaje automático para ver qué podría «caer». Además, no 
todas las investigaciones actuales involucran terabytes de 
datos. Tiene que haber espacio para una investigación re-
flexiva sobre procesos donde, a menudo, los datos son in-
adecuados y no se presentan en una cantidad exorbitante 
(véase más adelante).
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4. Análisis espacial

Permítanme abordar mi pasión investigadora duran-
te los casi últimos treinta años: el análisis de datos espa-
ciales. La cuestión clave aquí es que siempre que se reco-
pilen datos con alguna referencia espacial asociada; 
inmediatamente resulta útil introducir la «ubicación» en 
el análisis. Cómo debería hacerse depende de la natura-
leza de los datos espaciales en sí; por ejemplo, con fines 
ilustrativos, los datos sobre temperatura recogidos en los 
lugares de monitorización se espera que muestren una 
mayor similitud/correlación en sitios más cercanos en-
tre sí, o se podría esperar que la incidencia de una enfer-
medad fuera más parecida en unidades de áreas vecinas 
que en unidades alejadas. Ignorar esta dependencia es-
pacial disminuiría la efectividad de la especificación de 
un modelo.

Tuve la suerte de unirme a este mundo de la investiga-
ción en el momento propicio para ser un constructor pio-
nero/seminal del mundo del análisis de datos espaciales 
bayesianos. Este campo estaba esencialmente vacío, la 
oportunidad era enorme y, a la luz de los comentarios 
anteriores, la inferencia bayesiana estaba idealmente ade-
cuada para trabajar con datos espaciales. Por ser más es-
pecífico respecto a ello, no está claro que las aproxima-
ciones asintóticas pudieran ser las técnicas apropiadas 
para el análisis espacial. ¿Tendría sentido pensar en am-
pliar la región a estudio, tal y como se amplía la ventana 
de tiempo con datos de series temporales, el también lla-
mado «aumento del dominio de la aproximación asintó-
tica» (increasing domain asymptotics)? ¿Tiene sentido pen-
sar en recopilar más y más observaciones dentro de la 
región de estudio, los llamados «asintóticos de relleno» 
(infill asymptotics)? La inferencia exacta proporcionada por 
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el paradigma bayesiano impide las preocupaciones asin-
tóticas.

Más concretamente, mi nicho en el mundo del análisis 
de datos espaciales ha sido la investigación de complejos 
procesos ambientales y ecológicos; un entorno en el que 
los datos, casi siempre, están espacialmente referenciados. 
Es un nicho donde los datos necesarios para conocer el 
proceso son casi siempre insuficientes. Las variables que 
realmente son más apropiadas para conocer las relacio-
nes, a menudo, no están disponibles; ¡no se quiere sacrifi-
car a un individuo de la población a estudio! Los datos 
subrogados son a menudo los mejores datos con los que 
podemos trabajar. Además, la recopilación de datos suele 
estar limitada por el esfuerzo que requiere el muestreo. 
Rara vez se tendrán los recursos y el tiempo para mues-
trear completamente la región de interés. La especifica-
ción del modelo, colaborando con especialistas, en la ma-
teria se vuelve crucial para extraer la mejor historia 
posible con los datos que tenemos. En este sentido, no solo 
me siento cómodo y recompensado con la modelización 
que desarrollo, sino que a la vez puedo sentirme «verde».

Dentro de los datos espaciales, en esencia, existen tres 
tipos. Uno es el caso en el que se elige un conjunto de ubi-
caciones y, luego, se registra una variable, como la tempe-
ratura o el nivel de ozono, en cada una de esas localiza-
ciones. Este caso se conoce como «datos geoestadísticos»; 
por ejemplo, la figura 1 muestra valores de un contami-
nante ambiental, los niveles de partículas en suspensión 
PM2.5, obtenidos en las estaciones de monitorización en 
Illinois, Indiana y Ohio. Vemos variación espacial en los 
niveles representados.

Un segundo tipo implica dividir una región en unida-
des de área y observar una variable en cada unidad; por 
ejemplo, incidencia de una enfermedad o tasa de crimi-
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nalidad. Estos datos se denominan «datos espaciales dis-
cretos»; por ejemplo, la figura 2 muestra, en Estados Uni-
dos, las puntuaciones promedio por estado de una prueba 
estandarizada de ingreso en la universidad. Vemos que las 
puntuaciones más elevadas se encuentran en el centro 
del país.

El tercer caso considera aleatorio el conjunto de ubica-
ciones donde algún fenómeno fue observado; por ejem-
plo, una especie vegetal o la venta de una propiedad. Estos 
datos se denominan «datos de patrón puntual»; por ejem-
plo, la figura 3 muestra los patrones de puntos de la distri-
bución de siete especies de plantas invasoras en Nueva 
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Figura 1. Mapa de los niveles de PM2.5 en las estaciones de monitorización de la muestra 
en tres estados del Medio Oeste de Estado Unidos; los símbolos representados indican el 
rango del nivel promedio de PM2.5 monitorizado durante el año 2001.
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Figura 2. Mapa de coropletas de las puntuaciones promedio del test SAT en 1999, en los 
48 estados contiguos de Estados Unidos y el distrito de Columbia.
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Figura 3. Distribución de ubicaciones de siete especies de plantas invasoras en Nueva 
Inglaterra.

Inglaterra en Estados Unidos. Vemos que los patrones de 
puntos varían de unas especies a otras.

Estos ejemplos pretenden ilustrar la riqueza de los 
datos espaciales. Sin embargo, apenas profundizan so-
bre el alcance de los problemas donde la consideración 
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de la ubicación mejora, notablemente, nuestra capaci-
dad de aprender sobre un proceso complejo. Según el 
proceso, cada tipo de dato requiere su propia elección 
de especificaciones de modelo. En este sentido, he teni-
do el placer de trabajar con todos estos tipos de datos, 
haciendo contribuciones a problemas que incluyen ex-
posición medioambiental, condiciones climáticas extre-
mas, distribución de especies, ventas de propiedades, 
dirección del viento y fusión de fuentes de datos.

5. Conclusión

Permítanme concluir con unas palabras sobre el tiem-
po tan especial que he pasado en Zaragoza. A finales del 
pasado siglo y a principios de este vine frecuentemente a 
España para asistir a los internacionalmente famosos en-
cuentros bayesianos cuatrienales Valencia, mencionados 
anteriormente. Como ya hice notar, España alberga un 
rico pasado y presente de bayesianos fundacionales. Sin 
embargo, mi verdadera relación con el país comenzó con 
mi conexión con María Asunción Beamonte, una profe-
sora de la Facultad de Economía y Empresa de la Univer-
sidad de Zaragoza, y ahora mi esposa. Empecé a visitar 
Zaragoza con regularidad. Mi primer trabajo fue con el 
profesor Manuel Salvador, la profesora Pilar Gargallo y la 
profesora Beamonte, todos de la Facultad de Economía y 
Empresa. Nuestro trabajo inicial se centró en capturar los 
mercados laborales locales en Aragón (Chakraborty et al., 
2013). Sin embargo, nuestro trabajo más trascendental 
investigó el mercado inmobiliario de Zaragoza. Primero, 
examinamos el cambio en la distribución espacial de las 
ventas de inmuebles residenciales antes y después de la 
crisis económica de principios del siglo xxi (Paci et al., 
2017). Más tarde, analizamos cómo la aleatoriedad en los 
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lugares de venta, además de las características de las pro-
piedades, afectaban al precio de venta de las viviendas 
(Paci et al., 2020). Este trabajo fue el primer esfuerzo para 
investigar el efecto del muestreo preferencial en un mo-
delo hedónico, que es la especificación de regresión habi-
tual para explicar el precio de venta. Durante la segunda 
década del siglo xxi, también tuve la oportunidad de im-
partir en esta universidad un curso corto en análisis de 
datos espaciales, así como presentar una conferencia pú-
blica en la Facultad de Economía. También trabajé a lo 
largo de más de un año con la profesora Beamonte y el 
profesor Fernando Pérez-Cabello, del Departamento de 
Geografía y Ordenación del Territorio, sobre la recupera-
ción de la vegetación tras los incendios forestales (Paci 
et al., 2017).

Un cambio importante en mi relación con la Universi-
dad de Zaragoza ocurrió en 2017 cuando, gracias a la ayu-
da de la profesora Beamonte, conecté por primera vez, 
profesionalmente, con los profesores Ana Carmen Ce-
brián, Jesús Asín y Jesús Abaurrea, del Departamento de 
Métodos Estadísticos, iniciando una colaboración para 
investigar eventos de calor extremo, bajo un gran proyec-
to encabezado por el profesor Gerardo Sanz Saiz. Esta 
conexión ha sido y sigue siendo notablemente producti-
va, llevando a cabo importantes contribuciones al desa-
rrollo de modelos de temperatura máxima diaria (Schliep 
et al., 2021; Castillo-Mateo et al., 2022), extensiones del 
calor extremo (Cebrián et al., 2021), comportamiento 
cuantílico de las temperaturas máximas diarias (Casti-
llo-Mateo et al., 2023; Castillo-Mateo et al., 2024) y tem-
peraturas récord (Castillo-Mateo et al., 2025). Todo este 
trabajo ha aparecido en los foros de más alto nivel de es-
tadística. En medio de esta colaboración, Jorge Castillo 
Mateo se unió al equipo para realizar su doctorado, con-
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tribuyendo notablemente con sus habilidades de modeli-
zación y computación, lo que lo condujo a culminar su 
doctorado presentando una tesis que fue galardonada. 
Continuamos estando muy activos y todavía, después de 
seis años de trabajo conjunto, nos reunimos cada dos se-
manas. También relacionado con estos trabajos, tuve la 
oportunidad de dar charlas magistrales invitadas en con-
gresos como la Sociedad Española de Estadística e Inves-
tigación Operativa (SEIO) en Granada y en Madrid, así 
como en Workshop Internacional sobre Modelización 
Espacio-Temporal (METMA) en Lleida.

En resumen, me resulta difícil describir lo orgulloso 
que estoy de recibir este doctorado honoris causa. Es el 
mayor honor que esta universidad, de más de quinientos 
años de existencia, puede otorgar, y me siento honrado 
de pensar que la universidad me ha considerado digno de 
recibirlo. Otra vez, gracias a todos.
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THE RISE OF BAYESIAN INFERENCE  
IN THE 21ST CENTURY

Alan E. Gelfand

1. Introduction

Let me begin by thanking Professor Ana Carmen Ce-
brián and Professor Gerardo Sanz Saiz for proposing me 
for this exceptional honor. All of their effort on my be-
half is much appreciated. Also, let me thank my wife, 
Professor María Asunción Beamonte, who has not only 
been a research collaborator but has also helped me to 
navigate the building of the research relationships I have 
at this esteemed institution. In addition, let me thank 
Professor Jesús Asín and Professor Jorge Castillo-Mateo 
as integral members of our successful research team in 
the Department of Statistical Methods. All of you have 
helped me to begin a very special component of my re-
search career here at the Universidad de Zaragoza. At 
the end I will offer more detail about how successful this 
window of more than ten years has been.

What is this lecture about? I recognize that only a small 
portion of the audience is knowledgeable regarding the 
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field of Statistics, much less the inference paradigm of 
Bayesian Statistics and its recent evolution. So, my talk 
will be presented at an accessible level to trace this evolu-
tion. To those who are knowledgeable, please excuse this 
evidently subjective view. It will reflect my biases and, 
therefore, I apologize in advance for any unfortunate 
omissions.

Everyone has had some exposure to Statistics, often a 
negative one, perhaps referring to it as Sadistics! And 
everyone will be aware of abuses that have been committed 
in the name of Statistics. However, Statistics has become a 
critical field for the research communities across all areas 
of scientific investigation. These days it rarely suffices to 
infer conclusions without the support of data. Moreover, 
more and more data is being collected – we are all now 
familiar with the terms Data Science and Big Data. For a 
given area of inquiry, the role of statisticians is to facilitate 
extraction of the strongest stories that are possible from 
the data that has been collected. And, again with massive 
amounts of data, this role is increasingly critical. Statistics 
is not a glamor field. Typically, statisticians do their work 
in the background, with findings being presented by the 
subject matter specialists in the investigation. However, 
there is a famous quote attributed to John Tukey, one of 
the most highly regarded statisticians of the second-half 
of the 20th century: «Statisticians get to play in everyone’s 
backyard».

Moreover, the contributions of statistical thinking 
and analysis have manifested themselves in substantial 
ways in major research areas such as medicine and phar-
maceuticals, business and economics, social sciences 
and psychology, environmental and ecological processes, 
engineering and natural science. The types of problems 
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have spanned comparison of populations, design of ex-
periments, association, regression and causality, time se-
ries data, sequential data collection, multivariate data, 
and, most dear to me, spatial and spatio-temporal data.

2. The Bayesian paradigm

Where does Bayesian inference fit into this landscape? 
Let’s back up a bit to try to explain what Bayesian inference 
is and how it differs from what is usually referred to as 
classical or frequentist inference. The origin of Bayesian 
inference dates to the Reverend Thomas Bayes, an English 
Presbyterian minister as well as statistician and philoso-
pher. In particular, what is known as Bayes’ theorem or 
Bayes’ rule was developed in the 1750’s but first appeared 
in print in 1763 through Richard Price, a friend of Bayes. 
So, it is not quite as old as this eminent institution but old 
in the statistical firmament!

Bayes was thinking in terms of probabilities and, in 
particular, the idea of conditional probabilities. In its sim-
plest form, given two related events, how does the chance 
of the occurrence of one event change given the informa-
tion that the other event has occurred? Let me offer an 
elementary illustration. Suppose we have a deck of 52 
playing cards, 13 spades, 13 hearts, 13 diamonds, and 13 
clubs. Suppose we draw a card at random from the deck 
but don’t look at it. What is the probability that it is a 
spade, event A? Immediately, we answer 1/4. However, 
suppose we draw a second card from the deck. We look at 
it and it is a spade, event B. We can again ask what is the 
probability that the first card is a spade? Has this new in-
formation changed the probability? If so, what is the 
correct answer? We are seeking P (A | B), this notation 
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meaning the probability that event A occurs given event B 
occurred. Bayes noted that we could calculate 

P(A | B) = P(B | A) P(A) / P(B), 

since 

P(A | B) P(B) = P(B | A) P(A) = P(A & B). 

Further,  

P(B) = P(B & A) + P(B & no A). 

Then, directly

P(A/B)  =  
(12/51) × (1/4)

(12/51) × (1/4) + (13/51) × (3/4)
=  12/51

How did such a simple probability calculation be-
come an inference paradigm? Suppose we replace A and B 
by random variables X and Y. Then, we obtain 

f (X | Y) = f (Y | X) f (X) / f (Y), 

i.e., the distribution of the variable X given the variable Y. 
Going one step further, suppose we think of Y as the data 
we have observed and we think of X as what we don’t know 
about the distribution of the data. Then we obtain

f (unknowns|data) =  
f (data|unknowns) f (unknowns) / f (data) ∝ 

f (data | unknowns) f (unknowns)

The proportionality arises since the denominator term 
on the central line doesn’t depend on the unknowns. What 
we see from this equation, this model specification, is a 
mechanism such that the left side enables us to learn/infer 
about what we don’t know given what we have observed. 
This is the essence of Bayesian inference. In fact, it seems 
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completely natural; it is how we live life empirically. We 
make decisions based upon what we have seen!

Moreover, suppose we write this equation in the form

f (data & unknowns) =  
f (data | unknowns) f (unknowns) =  

f (unknowns | data) f (data)

From the term in the first line, we see that we are pro-
viding a specification for the joint randomness of what we 
don’t know and what we observe. The central form is what 
we could call generative. It describes how, e.g., Mother Na-
ture (or your favorite deity) chooses a random realization 
of what we don’t know. Then what we see, as data, is a ran-
dom realization given the unknowns that were chosen. 
The last line form is inferential. It shows belief revision. It 
provides a distribution to clarify how we revise inference 
on what we don’t know given what we have seen. The last 
term, f (data), will not get any attention here but, concep-
tually, it enables us to see how well our model specification 
does and to compare it to other model specifications.

You may ask what is the classical or frequentist 
approach for inference? The classical approach (or at 
least a sensible classical approach) looks only at f (data | 
unknowns), the so-called likelihood. That is, it tries to find 
values for the unknowns which are likely to have given 
you the data you have seen. Doesn’t this reasoning seem 
backwards? It asks you to investigate what you might see 
given what you don’t know. Nonetheless, this paradigm 
dominated the relatively young discipline of statistical in-
ference for essentially the entire 20th century dating to 
the founding fathers of the discipline such as R. A. Fisher 
(along perhaps, with Karl Pearson, Jerzy Neyman, David 
Cox, C. R. Rao, and P. C. Mahalanobis). And, even today, 
it still dominates!
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In the context of doing data analysis with a given 
model, there are customarily two types of unknowns with 
different inference objectives. One type of unknown is 
referred to as a parameter and associated inference is re-
ferred to as estimation. Parameters are artificial unknowns 
incorporated into an explanatory model such as coeffi-
cients in a regression model. They are not real but, rather, 
they are constructs to provide a device for capturing expla-
nation. They will not mean the same thing, they are not 
comparable, across different model specifications. This 
is not to demean the value of parameter estimation but 
rather to clarify its role. The other type of unknown is a 
potential observation that was not collected but we would 
like to infer about. The associated inference is referred to 
as prediction. Such unknowns are real quantities, taking 
values in the space of the data. Prediction of a tempera-
ture, a property value, a birth weight, etc., means the same 
thing regardless of the choice of model. So, models can be 
directly compared in terms of predictive performance. 
The use of prediction in modern data analysis is vital.

It is worth adding some more words here regarding 
the difference between the classical approach and the 
Bayesian approach. The classical approach typically limits 
the data analyst to look at some features of f (data | un-
knowns), to calculate statistics as functions of the data, and 
utilize them to learn about the unknowns in the likeli-
hood. Which statistics shall we employ and how shall we 
employ them? What if we have several choices of statistics 
to utilize? Their distributions depend upon the unknowns 
and, except in simple cases, are usually unavailable ex-
plicitly. And, what if we have no statistics that have been 
proposed in the literature to utilize?

In any event, customarily, we resort to asymptotics to 
obtain an approximate distribution for available statistics. 
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How do we know when the asymptotics are good enough, 
when the approximation is adequate? These asymptotic 
approximations depend upon data we will never see. 
Rather, we have the data that we have; we can never have 
an infinite amount of data, so we really do not know how 
well we are doing in adopting asymptotics. Moreover, 
even in the best case scenario, frequentist inference is 
limited. We may be able to get a good point estimate for 
an unknown and we may be able to get some sort of inter-
val estimate for this unknown, some uncertainty for this 
unknown. However, that is as far as classical inference will 
take us!

By contrast, Bayesian inference provides a full distribu-
tion, a so-called posterior distribution for any unknown. 
This is the best one can hope for, all inference is availa-
ble. We can obtain point estimates for the unknown, e.g., 
mean, median, or mode. We can obtain uncertainty esti-
mates, e.g., variances or ranges. We can also provide any 
probability statements we wish regarding the unknown, 
e.g., the posterior probability that it will fall in a specified 
set. Most importantly, this inference is exact. Under the 
modeling that we have specified, it is supplied with appro-
priate precision and accuracy. There is no dependence 
on asymptopia, on what future data might be collected. 
There is no discomfort with regard to proximity to asymp-
topia!

Why didn’t Bayesian inference emerge as the domi-
nant paradigm? Why was it ignored, by and large, until 
essentially the last part of the 20th century? The immediate 
answer is the need to specify f (unknowns), the distribution 
of what we don’t know, what is called the prior distribution. 
Since different individuals may offer differ versions of f 
(unknowns), different posterior inference will arise. In-
ference becomes subjective. How can we confidently report 
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results which depend upon what prior we chose? Further-
more, as the process we are studying becomes more com-
plex, the dimension of the space of unknowns becomes 
larger and larger. The dimension of the prior distribu-
tion becomes very large. It would appear that sensitivity 
to prior specification is a hopeless challenge. Indeed, 
with such subjectivity, how can this be good science, an 
insistent criticism of Bayesian data analysis?

While it is true that the need to adopt a prior makes 
Bayesian inference inherently subjective, this need not be 
a serious practical challenge. In certain cases we may ac-
tually have useful information about unknowns which we 
can incorporate into the prior specification. For instance, 
this information may arise from prior knowledge about 
the process under study, e.g., we don’t adopt priors that 
would tend to generate unrealistic data. Alternatively, 
perhaps prior data collected on the process has revealed 
where unknowns are likely to lie before we analyze our 
new data. Another possibility is prior elicitation, i.e., a de-
signed procedure to use experts to help to provide appro-
priately informative priors.

However, in the 21st century these approaches are 
not commonly employed. Rather, we prefer to take the 
view to let «the data do the talking». We adopt so-called 
weak, vague, noninformative priors in order to let the 
data dominate the inference in the posterior. Different 
modelers may prefer/feel comfortable with different 
choices of these weak priors and, in this regard, it is 
incumbent upon the Bayesian data analyst to implement 
some prior sensitivity analysis. It is not my intention to be 
glib in this regard. However, with application to larger 
datasets, the number of parameters becomes large. Then, 
implementing such analysis becomes very demanding 
and typically reveals little inference sensitivity.
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Providing names very selectively and risking offending 
some, as Bayesian inference moved from the end of the 
20th century to the start of the 21st century, very influential 
researchers include Sir Adrian F.M. Smith along with 
Professor James Berger (Duke University), Professor Mike 
West (Duke University), Professor Persi Diaconis (Stanford 
University), Professor Donald Rubin (Harvard University, 
at that time), Professor Christian Robert (Université Paris-
Dauphine), and Professor Adrian Raftery (University of 
Washington). Currently, three very highly cited Bayesian 
researchers are Professor Andrew Gelman (Columbia 
University) in social sciences, Professor Michael I. Jordan 
(University of California, Berkeley) in machine learning, 
and Professor David Dunson (Duke University) in methods 
for complex, high dimensional data.

Spain is home to a rich past and present of foundational 
Bayesians. In the 21st century we also find more and more 
researchers focusing on hierarchical modeling. Early effort 
dates to the group at the University of Valencia including 
Professor José Bernardo, who was the founder of the 
internationally successful «Valencia» meetings which 
occurred quadrennially through 2010. A leader during this 
window was Professor M.J. (Susie) Bayarri. The Bayesian 
tradition continues at Valencia including Professor Antonio 
Manuel López Quílez, Professor Carmen Armero, Professor 
David Conesa, and Professor Anabel Forte. A formerly 
quite active Bayesian group was in Granada led by Professor 
Elías Moreno and Professor F. Javier Girón. A partial list 
of other internationally regarded Bayesian researchers 
includes Professor David Ríos Insua, Professor Manuel 
Salvador, Professor María Dolores (Lola) Ugarte, Professor 
María Eugenia Castellanos, Professor Gonzalo García-
Donato, Professor Virgilio Gómez Rubio, and Professor 
Miguel Ángel Gómez-Villegas.
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Stepping back, Dennis Lindley was a founding father, 
proponent, and developer of the Bayesian inference 
paradigm, which also included Leonard J. Savage, 
Morris DeGroot, George Box, Arnold Zellner, and I.J. 
Good. Notably, Lindley forecasted that the 21st century 
would be Bayesian because of its clear inferential 
attractiveness. However, what is the real story that held 
back the Bayesian paradigm in the 20th century but has 
now enabled it to rise as the «go to» approach for 
investigating complex processes in the 21st century? The 
answer is computation.

An inspection of the expression for the posterior 
distribution of unknowns reveals that it is only available up 
to proportionality. As a result, inference is not possible 
since the area under the distribution has to be normalized 
to one. Probabilities can not be calculated; expectations 
can not be calculated. And, except for fairly simple 
settings, the needed constant, f (data) can not be obtained 
explicitly. To calculate it requires integrating over the 
space of unknowns. As the dimension of the unknowns 
grows large, as it is with problems of real interest in the 
21st century, this integration becomes infeasible. So, until 
1990, Bayesian inference was stuck in a rut. It offered a 
very attractive inference paradigm but was limited to so-
called «toy» problems.

But then, in 1990 came the major computational 
breakthrough. And, I was fortunate to be the co-author, 
with Adrian Smith, of the seminal paper which opened 
the door for this breakthrough (Gelfand and Smith, 
1990). The approach, known as Gibbs sampling and 
Markov chain Monte Carlo (MCMC), has become the 
most prominent tool for implementing Bayesian analysis 
and, arguably, by itself, created the revolutionary rise of 
Bayesian inference in the 21st century.



69

What is the basic idea? Replace infeasible integration 
with sampling. Indeed, sampling is the most fundamental 
idea in Statistics; we understand that the more we sample 
a population, the better we learn about it. (In fact, this is 
standard «frequentist» thinking!) So, the idea is that 
Gibbs sampling and MCMC provide a mechanism for 
sampling arbitrarily many realizations from the posterior 
distribution f (unknowns | data). The true novelty to enable 
this was to create and sample a Markov chain whose 
stationary or limiting distribution is the desired posterior. 
Once the chain was essentially stationary, as many 
posterior samples as desired could be collected. With 
arbitrarily many samples from the posterior, we could 
learn arbitrarily well about any features of the posterior. 
We could achieve the full benefit of the Bayesian inference 
paradigm. Serendipitously, at the time we realized the po-
tential of this computational breakthrough, the research 
community was experiencing a dramatic increase in the 
availability of inexpensive, high-speed computing capa-
bility required to implement the needed sampling.

Evidently, this breakthrough became a boon to proba-
bilists, who have continued to refine the implementations, 
to the computer specialists who have developed increas-
ingly efficient algorithms for model fitting using Gibbs 
sampling and MCMC, and, most importantly to me, to the 
modelers who appreciated the liberation that this model 
fitting strategy enabled. One could fit the models one 
wanted, NOT just the models for which there was 
asymptotic theory. Indeed, since 1990, the floodgates have 
opened and the scope and size of models now being 
employed across the world of applications has become 
enormous. Traditionalists fret that models have now 
become as big as elephants, that they lose the elegance of 
simpler specifications. It is certainly the case that models 
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can be too big for the data to support, that this tool can 
encourage overfitting of models to the available data. 
However, again, the opportunity to explore flexible models 
to learn about features of complex processes is the 
objective. Scientifically, this is as valuable as could be hoped 
for and avoiding models that are too big becomes a 
component of the model selection process.

A further word here is to note that, as technology 
moves forward, other model fitting strategies have 
emerged including integrated nested Laplace approxi-
mation (INLA) which introduces integral approxima-
tion, approximate Bayesian computation (ABC) which 
employs forward simulation, and variational Bayes 
which replaces integration with optimization. In many 
applications these approaches can be more suitable or 
more efficient. And, as such, they have been recognized 
as being useful for certain classes of problems. However, 
at present, Gibbs sampling and MCMC remain the most 
widely used tool in this new Bayesian era.

3. Hierarchical modeling

In order to better appreciate how the paradigm is em-
ployed in complex settings, it is useful to extend Bayes’ 
Theorem to a hierarchical or multi-level form

f (data | process, unknowns1) f (process | unknowns2)  
f (unknowns1, unknowns2).

What we have done is introduce the process of interest 
as a component of the modeling and recognize that 
unknowns2 drive the process and the process, with a further 
set of unknowns1, drive the data that we observe under the 
process. The inference we seek is the posterior distribution, 
f (process, unknowns1, unknowns2 | data) where, as above, the 
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posterior enables full inference. The form justifies the 
naming as hierarchical or multi-level.

This expression looks relatively innocuous, but its 
breadth should not be underestimated. Nothing has been 
said about the nature of the data specification or the pro-
cess specification. These can be as rich as data collection 
justifies, as flexible as the aspects of the process one seeks 
to capture. We will elaborate this a bit in the next para-
graph. It is important to note that both the data specification 
and the process specification are approximations; they are 
not «correct». They have uncertainty, they have unknowns. 
Hopefully, they are useful and, in any event, are supplied 
anticipating variability in response to inputs.

Elaborating, the joint distribution on the left side is 
provided in terms of three pieces on the right side. These 
pieces may be easier to consider/formalize individually 
rather than thinking about the entire joint distribution. 
Moreover, each of these pieces can be quite complex. For 
instance, the relationship between data and process 
might depend on many things. It might be different for 
different types of data. For the process model, there may 
be spatial or temporal aspects that suggest the modeling 
might depend upon where and when the process oc-
curred. The good news is that we can use appropriate 
conditioning to capture these aspects in straightforward 
ways. Advantages of this way of thinking about modeling 
include: (i) the ability to construct complex models from 
simple conditional relationships. We need not conceptual- 
ize an integrated specification for the problem, only the 
components which will be linked up through directed 
graphical models – nodes and arrows, (ii) we can relax 
customary requirements that insist on independent data. 
Conditional independence is enough. We typically intro-
duce dependence at a second or third stage in the mode-
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ling which, marginally, introduces association in the data, 
(iii) we can accommodate different data types within the 
analysis as well as «data» that are output from, say, a com-
puter model, (iv) by attaching randomness to what we ob-
serve as well as to what we don’t observe, we build a fully 
Bayesian specification. The unification of inference pro-
vided by the Bayesian paradigm leads immediately to 
looking at the posterior distribution of everything that we 
did not observe given everything that we did. Though 
such a posterior will be high dimensional and analytically 
intractable, we can take advantage of the Bayesian com-
putation tools, described briefly above, to fit these models 
and provide the desired inference.

A particular attraction of this approach is that it allows 
introduction of all sources of information in prescribing 
the modeling – mechanistic, theoretical, and empirical 
(which may have emerged from designed experiments!). 
A further appeal is flexibility. We anticipate investigating 
different specifications in order to select an overall model 
which performs well with regard to both estimation and 
prediction. The focus changes from a debate over which 
inferential procedure to adopt to a focus on model devel-
opment that achieves satisfying integration of knowledge.

Overarching the above is a noteworthy change that has 
occurred in the data collection landscape as we transi-
tioned to the 21st century. There has been remarkable 
growth in data collection, with datasets now of enormous 
size. Also, there has been a change toward examination of 
observational data, rather than being restricted to care-
fully-collected, experimentally designed data. By their 
design, the latter impose restrictions on what process 
realizations we can expect to see, limiting our ability to 
satisfactorily understand the process. The former provide 
unfiltered realizations of the process. As above, this has 
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led to an increased examination of complex systems 
using such data, requiring synthesis of multiple sources 
of information (empirical, theoretical, physical, etc.), 
necessitating the development of multi-level models. 
Stochastic modeling enables us to supply specifications for 
these realizations to see how well we can estimate and 
predict the behavior of the process.

Let me offer a few more words regarding hierarchical 
or multi-level modeling. This is the world of stochastic 
modeling in which I am a devoted member! This is the 
world that has dramatically changed the role of the statis-
tician. This is the world that has fostered team research 
making the statistician an integral participant in team-
based research – a participant in the framing of the 
questions to be investigated, the determination of data 
needs to investigate these questions, the development  
of models to examine these questions, the development of 
strategies to fit these models, and the analysis and 
summarization of the resultant inference under these 
specifications. We have arrived at an exciting new world 
for modern Statistics.

The range of application for hierarchical modeling 
runs the scientific gamut noted in the «Introduction», 
e.g., biomedical and health sciences, economics and fi-
nance, environment and ecology, engineering and natu-
ral science, political and social science. Hierarchical mod-
eling has taken over the landscape in contemporary 
stochastic modeling. Though analysis of such modeling 
can be attempted through non Bayesian approaches, the 
Bayesian paradigm enables exact inference and proper 
uncertainty assessment within the given specification. 
Finally, the computation hurdle has been overcome. 
MCMC and Gibbs sampling but also sequential impor-
tance sampling, particle filters and particle learning, as 
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well as INLA, ABC, and variational Bayes, have unleashed 
the full power of such modeling.

Hierarchical modeling, as the general formulation 
above illustrates, is a very broad term that refers to wide 
range of model specifications. Without formal elabora-
tion, they include random effects models, random coeffi-
cient models, variance-component models, mixed effect 
models, latent variable models, missing data models, and 
state space models. The key feature is that hierarchical 
models are statistical models offering a formal framework 
for analysis with a complexity of structure that matches 
the system being studied.

In the early days, hierarchical or multi-level modeling 
referred to «nested» structures, e.g., pupils nested in 
classes, classes nested within schools or houses nested 
in neighborhoods, neighborhoods nested within cities. 
However, nowadays, such modeling is extended to 
heterogeneity, e.g., in regression forms, i.e., the general 
relationship. Additionally, they can capture heterogeneity 
in modeling variances/uncertainty, e.g., variability in 
house prices varies from neighborhood to neighborhood. 
They can capture dependent data, that is, potentially 
complex dependencies in outcomes over time, over space, 
over context, e.g., house prices within a neighborhood 
tend to be similar. They can model contextuality – macro 
relations, e.g., interest rates and gross national product 
and micro relations, e.g., individual house prices will 
depend on individual property characteristics, as well as 
on neighborhood characteristics.

It is worth adding some words connecting Bayesian 
inference to machine learning. Machine learning usu-
ally considers learning approaches, including unsuper- 
vised, supervised, semi-supervised, or reinforcement, with 
application to regression, classification, and clustering.  
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Initial work was deterministic, doing suitable optimi-
zations of objective loss functions, often with some 
unknowns fixed, to obtain predictions. It is clear that 
this is inadequate, that uncertainty is needed. As a 
result, Bayesian inference plays a crucial role in machine 
learning by providing a probabilistic framework for 
reasoning under uncertainty and enhancing model 
accuracy and interpretability. By explicitly representing 
dependencies between variables and incorporating 
probabilistic information, Bayesian networks enable 
more satisfying modeling of complex systems. This allows 
machine learning algorithms (as above) to make more 
informed predictions and decisions. As an example, the 
much used terminology deep learning is based on artificial 
neural networks, i.e., graphical models (bigger versions 
of hierarchical models) with many layers (hence the 
term deep), incorporating suitable inputs and activation.

In this regard, probabilistic machine learning emer- 
ged, which essentially meant embedding the foregoing 
tasks within a probabilistic framework, essentially a 
Bayesian framework. This has enabled the development 
of probabilistic performance guarantees and uncertainty 
quantification, providing error bounds and distributions 
for prediction. The result is that Bayesian inference has 
become essential in modern machine learning and artifi-
cial intelligence work, offering a robust methodology for 
probabilistic reasoning and uncertainty quantification. A 
very well-done entrée into probabilistic machine learning, 
particularly the deep learning revolution, is presented 
in the prize-winning text of Kevin Murphy from 2012  
(a substantial 1,200 pages) with follow-on in two volumes 
in 2022 (more than 1,600 pages). Murphy’s development 
is entirely through the unifying lens of probabilistic 
modeling and Bayesian decision-making.
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A last thought here concerns the future of Statistics as 
a discipline. While Data Science is implicitly driven by Sta-
tistics, there is current movement to incorporate Statistics 
under the umbrella of Data Science, along with fields 
such as computer science, computer engineering, and in-
formatics. While Statistics plays a vital role in these fields, 
I feel that it is critical for Statistics to continue to stand 
alone as a field. What Statistics offers is hypothesis-driven 
research rather than throwing algorithms at big datasets. 
It offers the opportunity for careful modeling of complex 
processes and structures rather than adopting machine 
learning methodology to see what might fall out. Moreo-
ver, not all current research involves terabytes of data. 
There has to be space for thoughtful investigation of pro-
cesses where, often, data is inadequate and not enormous 
(see below).

4. Spatial analysis

Let me turn to my research passion for nearly the last 
thirty years – analyzing spatial data. The key issue here is 
that whenever data is collected with some associated spa-
tial referencing it becomes useful to introduce «location» 
into the analysis. How this should be done depends upon 
the nature of the spatial data itself but, illustratively, tem-
perature data collected at monitoring sites will be ex-
pected to show stronger similarity/correlation at sites 
closer to each other. Incidence of disease might be ex-
pected to be more similar in neighboring areal units than 
in units far apart. Ignoring this spatial dependence will 
diminish the effectiveness of a model specification.

I was fortunate to join this research world in time to be 
a seminal/pioneering builder of the world of Bayesian 
spatial data analysis. This field was essentially empty, the 
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opportunity was enormous and, in light of the foregoing 
discussion, Bayesian inference was ideally suited for work-
ing with spatial data. To be more specific in this regard, it 
is unclear what asymptotics would be appropriate for spa-
tial analysis. Does it make sense to think of expanding the 
study region like expanding the time window with time 
series data, so-called increasing domain asymptotics? 
Does it make sense to think of collecting more and more 
observations within the study region, so-called infill 
asymptotics? The exact inference provided by the Bayesian 
paradigm precludes asymptotic concerns.

Furthermore, my niche in the world of spatial data 
analysis has been the investigation of complex environ-
mental and ecological processes, a setting in which data is 
almost always spatially-referenced. It is a niche where the 
data needed to learn about the process is almost always 
inadequate. Variables that are really most appropriate to 
learn about relationships are often not available; one 
does not want to sacrifice an individual! Surrogates are 
often the best data we can work with. Further, data collec-
tion is usually constrained by sampling effort. One will 
rarely have the resources and the time to completely sam-
ple the region of interest. Collaborative model specifica-
tion with subject matter specialists becomes crucial in or-
der to squeeze out the best story one can with the data 
that one has. So, in this regard, not only am I comfortable 
and rewarded with the modeling that I develop, but I can 
also feel «green».

For spatial data, in essence, there are three spatial 
data types. One is the case where a set of locations is cho-
sen and then a variable such as temperature or ozone 
level is recorded at each location. This case is referred to 
as geostatistical data. For example, Figure 1 shows values of 
an environmental pollutant, particulate matter (PM2.5), 
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obtained at monitoring stations in Illinois, Indiana, and 
Ohio. We see spatial variation in the levels.

A second type involves partitioning a region into areal 
units and observing a variable at each unit, e.g., incidence 
of a disease or rate of crime. Such data is referred to as 
discrete spatial data. For example, Figure 2 shows, for the 
U.S., average test scores by state for a standardized col-
lege entrance test. We see that elevated scores occur in 
the middle of the country.

The third case considers the set of locations where 
something was observed as random, e.g., a plant species or 
a property sale. Such data is referred to as point pattern 
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Figure 1. Map of PM2.5 sampling sites over three midwestern U.S. states; plotting charac-
ter indicates range of average monitored PM2.5 level over the year 2001.
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data. For example, Figure 3 shows the point patterns for 
the distribution of seven invasive plant species in New 
England in the U.S. We see that the point patterns vary 
across species.

These examples are intended to illustrate the richness 
of spatial data. Yet, they barely scratch the surface with 

Figure 2. Choropleth map of 1999 average verbal SAT scores, lower 48 U.S. states and the 
district of Columbia.
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Figure 3. The distribution of locations for seven invasive plant species across New 
England.
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regard to the scope of problems where consideration of 
location vitally increases our ability to learn about a com-
plex process. According to the process, each spatial data 
type requires its own choice of model specifications. In 
this regard, I have had the pleasure of working with all of 
these data types, making contributions to problems in-
cluding environmental exposure, extremes of weather, 
species distribution, property sales, wind direction, and 
fusion of data sources.

5. Conclusion

Let me conclude with some words regarding the spe-
cial time I have spent in Zaragoza. I came to Spain fre-
quently at the end of the last century and into the new 
one to attend the internationally famous quadrennial 
Bayesian Valencia meetings mentioned above. As I noted 
earlier, Spain is home to a rich past and present of foun-
dational Bayesians. However, my real connection with the 
country began with my relationship with María Asunción 
Beamonte, a professor in Facultad de Economía y Empre-
sa at the Universidad de Zaragoza, and now my wife. I 
began to visit Zaragoza regularly. My early work was with 
Professor Manuel Salvador, Professor Pilar Gargallo, and 
Professor Beamonte, all in the Facultad de Economía y 
Empresa. Our initial work focused on capturing local la-
bor markets in Aragón (Chakraborty et al., 2013). How-
ever, our more consequential work investigated the real 
estate market in Zaragoza. We first examined the change 
in spatial distribution of residential property sales before 
and after the economic crisis at the beginning of the 21st 
century (Paci et al., 2017). Then, we turned to how the 
randomness in sales locations, in addition to the charac-
teristics of the properties, affected the selling price of 
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properties (Paci et al., 2020). This work was the first effort 
to investigate the effect of preferential sampling in he-
donic modeling, the customary regression specification 
to explain selling price. During that second decade of the 
21st century, I also enjoyed the opportunity to give a short 
course in spatial data analysis here, as well as to present a 
public lecture in the Faculty of Economics. I also worked 
over the course of more than a year with Professor Bea-
monte and Professor Fernando Pérez Cabello in the De-
partment of Geography and Land Management on 
post-wildfire vegetation recovery (Paci et al., 2017).

A consequential change in my relationship with the 
Universidad occurred in 2017 when, through the help of 
Professor Beamonte, I first connected professionally with 
Professor Ana Carmen Cebrián, Professor Jesús Asín, and 
Professor Jesús Abaurrea in the Department of Métodos 
Estadísticos to begin a research bridge to investigate ex-
treme heat events, under a large project headed by Pro-
fessor Gerardo Sanz Saiz. This connection has been and 
continues to be remarkably productive, making major 
contributions to the development of daily maximum tem-
perature models (Schliep et al., 2021; Castillo-Mateo et al., 
2022) extents of extreme heat (Cebrián et al., 2021), 
quantile behavior of daily maximum temperatures 
(Castillo-Mateo et al., 2023; Castillo-Mateo et al., 2024) 
and record-breaking temperatures (Castillo-Mateo et al., 
2025). All of this work has appeared in the topmost tier of 
statistical forums. Along the way, Jorge Castillo Mateo 
joined the team for his Ph.D., presenting remarkable 
modeling and computational skill, yielding an award- 
winning Ph.D. thesis. We continue to be very active, still 
meeting bi-weekly now after six years. Also related to this 
work, I had the opportunity to give keynote talks at the 
annual SEIO (the Spanish Statistical Society) meetings in 
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Granada and Madrid, as well as at a METMA (Interna-
tional Workshop on Spatio-Temporal Modelling) meet-
ing in Lleida.

In summary, it is difficult for me to describe how proud 
I am to receive this Doctor Honoris Causa. It is the high-
est honor that this more than 500 year old university can 
award, and I am humbled to think that the University has 
found me worthy. Otra vez, gracias a todos.

References

Castillo-Mateo, J., A.E. Gelfand, J. Asín, A.C. Cebrián, and 
J. Abaurrea (2023), «Spatial quantile autoregression for 
season within year daily temperature data», Annals of 
Applied Statistics, 17, pp. 2305-2325.

Castillo-Mateo, J., A.E. Gelfand, J. Asín, A.C. Cebrián, and J. 
Abaurrea (2024), «Bayesian Joint Quantile Autoregression», 
TEST, 33, pp. 335-357.

Castillo-Mateo, J., Z. Gracia-Tabuenca, J. Asín, A.C. Cebrián, 
and A.E. Gelfand (2025), «Spatio-temporal modeling for 
record-breaking temperature events in Spain», Journal of 
the American Statistical Association, 120, pp. 645-657. SEIO-
BBVA Applied Statistics paper of the year 2025.

Castillo-Mateo, M. Lafuente Blasco, A.E. Gelfand, J. Asín, 
A.C. Cebrián, and J. Abaurrea (2022), «Spatial modeling 
of day-within-year temperature time series: an examination 
of daily maximum temperatures in Aragon, Spain», JABES, 
27, pp. 487-505.

Cebrián, A.C., J. Asín, J. Castillo-Mateo, A.E. Gelfand, and 
J. Abaurrea (2024), «Assessing space and time changes in 
daily maximum temperature in the Ebro basin (Spain) 
using model-based statistical tools», International Journal 
of Climatology, 43(16), pp. 8036-8051.

Cebrián, A.C., J. Asín, E.M. Schliep, J. Castillo-Mateo, A.E. 
Gelfand, M.A. Beamonte, and J. Abaurrea (2022), «Spatio- 
temporal analysis of the extent of an extreme heat event», 



83

Stochastic Environmental Research and Risk Assessment, 36, 
pp. 2737-2751.

Chakraborty, A., A.E. Gelfand, M.A. Beamonte, M.P. 
Alonso, P. Gargallo, and M. Salvador (2013), «Spatial 
Interaction Models with Individual-level data for 
Explaining Labor Flows and Developing Local Labor 
Markets», Computational Statistics and Data Analysis, 58, 
pp. 292-307.

Gelfand, A.E. and A. F.M. Smith (1990), «Sampling Based 
Approaches to Calculating Marginal Densities», Journal of 
the American Statistical Association, 85, pp. 398-409. [Reprin-
ted in Breakthroughs in Statistics].

Murphy, K.L. (2012), Machine Learning: A Probabilistic Perspective, 
The MIT Press.

Paci, L., A.E. Gelfand, M.A. Beamonte, P. Gargallo, and  
M. Salvador (2017), «Analysis of residential property 
sales using space-time point patterns», Spatial Statistics, 21, 
pp. 149-165.

Paci, L., A.E. Gelfand, M.A. Beamonte, P. Gargallo, and  
M. Salvador (2020), «Spatial hedonic modeling adjusted 
for preferential sampling», Journal of the Royal Statistical 
Society, Series A, 183, pp. 169-192.

Paci, L., A.E. Gelfand, M.A. Beamonte, M. Rodrigues, and 
F. Pérez-Cabello (2017), «Space-time modeling for post-
fire vegetation recovery», Stochastic Environmental Research 
and Risk Assessment, 31(1), pp. 171-183.

Schliep, E., A.E. Gelfand, J. Asín, A.C. Cebrián, M.A. 
Beamonte, and J. Abaurrea (2021), «Long-term Spatial 
Modeling for Characteristics of Extreme Heat Events», 
Journal of the Royal Statistical Society, Series A, 184, pp. 1070-
1092.





Este libro se terminó de imprimir
en los talleres del Servicio de Publicaciones

de la Universidad de Zaragoza
el 14 de octubre de 2025



UniversidadZaragoza
Prensas de la Universidad

ACTO DE INVESTIDURA 
DEL GRADO DE DOCTOR 

HONORIS CAUSA

ALAN E. GELFAND

COLECCIÓN PARANINFO
HONORIS CAUSA

IS
B

N
 9

79
-1

3-
70

14
-0

24
-3




