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LAUDATIO
CEREMONIA DE INVESTIDURA
COMO DOCTOR HONORIS CAUSA
DE D. ALAN E. GELFAND

Con la venia de la Rectora Magnifica de la Universidad
de Zaragoza

Claustro togado

Autoridades

Miembros de la comunidad universitaria

Familiares

Senoras y senores

Es un verdadero honor para el profesor Gerardo Sanz
y para mi apadrinar al profesor Alan E. Gelfand en su
nombramiento como doctor honoris causa por la Universi-
dad de Zaragoza. Y no solo para nosotros, sino también
para los tres proponentes: los departamentos de Métodos
Estadisticos y Economia Aplicada y el Instituto Universita-
rio de Matematicas y sus Aplicaciones, asi como para la
Facultad de Ciencias, que también ha apoyado la pro-
puesta de este reconocimiento.

Segun el reglamento del nombramiento de los docto-
res honoris causa (HC) de la Universidad de Zaragoza, esta
distincion se otorga a aquellas personas que destacan y
tienen un prestigio excepcional en el campo de la in-
vestigacion y que son portadoras de valores universales.



Ademas, se valoran los vinculos del candidato con la Uni-
versidad de Zaragoza (UZ). Y, sinceramente, no puedo
pensar en una persona que cumpla todos y cada uno de
esos requisitos mejor que el profesor Alan E. Gelfand.

Para evitar cualquier duda, podemos usar el procedi-
miento matematico habitual y formularlo en forma de
teorema: tenemos tres hipotesis (prestigio internacional,
ser portador de valores universales y vinculaciéon con la
UZ) y, si demostramos esas hipotesis, obtendremos como
conclusion que el profesor Alan E. Gelfand es el candi-
dato perfecto para ser investido doctor HC por la UZ.
Y la demostracion de esas hipotesis es irrefutable, como
se expone a continuacion.

Hipotesis 1: Prestigio cientifico

Tengo que decir que demostrar esta tesis es una tarea
sencilla, pero hacerlo en unos pocos minutos es casi impo-
sible, ya que resulta dificil resumir en tan poco tiempo los
innumerable méritos y premios de su trayectoria académi-
ca; asi que lo que sigue es solo un breve resumen de ella.

Nacido en Nueva York, Alan E. Gelfand cursoé sus estu-
dios de grado en Matematicas en el City College of New
York. Posteriormente, obtuvo su doctorado en Estadistica
en la Universidad Stanford, bajo la direccion del profesor
Herbert Solomon. Comenz6 su carrera docente e investi-
gadora en la Universidad de Connecticut, donde trabajo
durante mas de treinta anos. En 2002, se incorporo a la
Universidad Duke, la sexta en el ranking de las universida-
des de Estados Unidos, donde fue nombrado James B.
Duke Professor of Statistical Science, la posicion académi-
ca mas prestigiosas de esa institucion.

Su nombre esta indeleblemente ligado a uno de los
hitos mas trascendentales en la historia reciente de la
Estadistica: la introduccion y formalizacion del uso de
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los métodos de Montecarlo via cadenas de Markov
(MCMC) en el contexto del andlisis bayesiano. En 1990,
junto con el profesor Adrian Smith, el profesor Gelfand
publicé el articulo «Sampling-Based Approaches to Cal-
culating Marginal Densities», en el JASA (Journal of the
American Statistique Association), una de las revistas mas
prestigiosas de Estadistica. Este articulo marc6 un punto
de inflexion en la inferencia estadistica moderna, permi-
tiendo abordar problemas que hasta ese momento eran
practicamente intratables. Lo que antes era teoria, gra-
cias al profesor Alan E. Gelfand, se volvié una técnica util
y aplicable. El Gibbs sampling, que ha sido un algoritmo
clave desde entonces, se deberia llamar Gelfand’s sam-
pling, como sostienen muchos investigadores bayesianos.
Ese articulo ha sido citado mas de 10 500 veces.

Desde entonces, ha realizado contribuciones de im-
portancia en multiples areas, principalmente modelizacion
jerarquica bayesiana, estadistica espacial y modeliza-
cion espaciotemporal. Su productividad cientifica es ex-
traordinaria: ha publicado mas de 350 articulos en revis-
tas académicas, 10 libros y monografias y ha dirigido
decenas de tesis doctorales. Su libro Hierarchical Modeling
and Analysis for Spatial Data, junto a los profesores Baner-
jee y Carlin, es considerado una de las «biblias» de la mo-
delizacion bayesiana y recientemente se ha publicado su
tercera edicion.

El profesor Alan E. Gelfand ha recibido numerosos re-
conocimientos internacionales por su investigacion, en-
tre los que destacan:

— Samuel Wilks Memorial Award.

— Distinguished Research Medal from ASA Section
on Statistics and the Environment.

— Elected Fellowship del International Statistical
Institute (IMS), la American Statistical Association
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(ASA) yla International Society for Bayesian Analysis
(ISBA).

— Presidente electo del ISBA.

— Chernoff Excellence Statistic Award.

Ha sido reconocido como uno de los 10 cientificos ma-
tematicos mas citados del mundo en el periodo 1991-
2001 (Tenth Most Cited Mathematical Scientist in the World
1991-2001, Science Watch)y se encuentra entre los mejores
matematicos del mundo en el ranking de la tercera edi-
cion de Research.com. Es importante insistir en que esto
solo es un breve resumen de su extensa lista de premios y
distinciones.

Hipotesis 2: Portador de valores universales

Como hemos establecido, la investigacion del profesor
Alan E. Gelfand ha contribuido de forma esencial a los
fundamentos teéricos del analisis bayesiano, pero su in-
fluencia va mas alla. Ha dedicado una parte importante de
su trabajo a desarrollar aplicaciones, utilizando técnicas
bayesianas, para dar respuesta a problemas de interés para
la sociedad, especialmente en ciencias medioambientales,
salud, estudios de polucion y biodiversidad; también ha
trabajado en aplicaciones climaticas, desarrollando mode-
los de gran utilidad en la monitorizacion del cambio clima-
tico. No hay ninguna duda de que su investigacion ha ayu-
dado a mejorar la sociedad y el mundo en el que vivimos.

Otra evidencia de sus valores universales es su impli-
cacion y generosidad en la formacion de nuevos investi-
gadores y sus colaboraciones con multiples grupos de
investigacion. Ha dirigido mas de 35 tesis doctorales v,
en palabras de uno de ellos, el profesor Alan E. Gelfand
representa el modelo perfecto de un director de tesis.
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También ha establecido colaboraciones de investigacion
en todo el mundo, y todo ello con una generosidad que
ha creado no solo relaciones profesionales, sino también
de amistad duradera. Una muestra de ello es que hoy
tenemos aqui a muchos investigadores en estadistica ba-
yesiana de primera linea internacional que han venido
desde distintos puntos de Espana, desde Roma, Milan,
Southampton e incluso del otro lado del Atlantico: desde
Washington, Texas, California y Carolina del Norte. To-
dos ellos estan hoy aqui en Zaragoza, para celebrar con
él este nombramiento. Esto es una prueba irrefutable del
gran impacto que Alan ha tenido en todos ellos, como
investigador y como persona.

Hipotesis 3: Vinculacion con la Universidad de Zaragoza

La colaboracion del profesor Alan E. Gelfand con la
UZ comenz6 en 2012, primero con los profesores Manuel
Salvador, Maria Asuncion Beamonte y Pilar Gargallo, del
Departamento de Economia Aplicada y, poco después,
con profesores de la Facultad de Ciencias. En particular,
desde 2014, ha formado parte del grupo Modelos Esto-
casticos, dirigido por el profesor Gerardo Sanz, gracias a
la profesora Maria Asuncion Beamonte, que lo introdujo
en el grupo. Dentro de este marco, el profesor Alan E.
Gelfand también ha formado parte del equipo de trabajo
en cinco proyectos con financiacion nacional. Su influen-
cia en la UZ es indudable. Dennis Lindley, uno de los
grandes promotores del «bayesianismo» en el siglo xx
dijo: «Inside every non-Bayesian there is a Bayesian stru-
ggling to get out». Sin duda, el profesor Alan E. Gelfand
ha sacado al bayesiano que muchos de los profesores de
Estadistica de esta universidad, entre quienes me incluyo,
llevibamos dentro. El resultado es que, gracias a su in-
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fluencia, en este momento hay un nodo importante de
estadisticos bayesianos en la Universidad de Zaragoza.

Respecto a la proyeccion de la UZ, en todos los proyec-
tos en los que ha colaborado con la UZ, el profesor Alan
E. Gelfand ha trabajado con datos espanoles y con fre-
cuencia de Aragon, de forma que tanto en sus publicacio-
nes como en sus numerosas conferencias invitadas ha lle-
vado el nombre de nuestra comunidad y de la UZ por
todo el mundo.

También ha posibilitado que varios profesores de la
UZ realicen estancias de investigacion en Duke y €l visita
regularmente la UZ.Y, en este punto, tengo que expresar
el honory el placer que es trabajar con Alan, y estoy segu-
ra de que Jesus Asin, Jorge Castillo y otros investigadores
presentes aqui hoy coincidiran conmigo. En todas y cada
una de las reuniones que tenemos con €l aprendemos
algo; en las discusiones de trabajo, siempre surgen ideas
interesantes, naturalmente las planteadas por €I, pero in-
cluso diria que, con su presencia, hace surgir mejores
ideas del resto del equipo; el Zaragoza team, como €l nos
llama. Ademads, consigue un ambiente de trabajo en equi-
po, donde todas las ideas se escuchan y se consideran, sin
establecer jerarquias, que €l, por su posicion, podria esta-
blecer. Esta accesibilidad y humildad, a pesar de sus innu-
merables méritos, hace que, a veces, sea facil olvidar el
privilegio que es trabajar con uno de los matematicos ac-
tuales mas importantes a nivel mundial. Por eso, a veces
es necesario que otros nos lo senalen. Recuerdo que, des-
pués del primer articulo que publicamos con €I, un pro-
fesor de otra universidad me felicité por esa publicacion
y le dije: «Si, estamos muy contentos: es el primer articulo
que publicamos en la /RSS», una revista muy prestigiosa,
y €l contesto: «En realidad, no te felicitaba por la revista,
sino por haber publicado con Alan Gelfand». Y tenia ra-
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z6n: el verdadero honor de ese trabajo era haber trabaja-
do con Alan. Y lo sigue siendo: en cada proyecto en que
colaboramos, es un privilegio trabajar con €l.

Con todo esto, han quedado demostradas sin ninguna
duda las tres hipotesis necesarias para obtener la conclu-
sion que queriamos enunciar: que el profesor Alan E.
Gelfand es el candidato perfecto para ser doctor HC por
la Universidad de Zaragoza.

Y, por todo ello, solo podemos finalizar esta laudatio,
querido profesor Alan E. Gelfand, diciendo gracias:

— Gracias por sus valiosas contribuciones a la Ciencia,
a las Matematicas, a la Estadistica y al Analisis Baye-
siano.

— Gracias por su apoyo y generosidad con nosotros,
con el grupo de Modelos Estocasticos y con toda la
Universidad de Zaragoza.

— Gracias por aceptar su nombramiento como doctor
HC por la Universidad de Zaragoza, en senal de
reconocimiento a sus contribuciones.

En definitiva, querido profesor Alan E. Gelfand, sea
muy bienvenido como nuevo ilustrado de esta nuestra uni-
versidad, desde ahora también su universidad.

Ana C. CEBRIAN
Gerardo SANZ
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LAUDATIO
INVESTITURE CEREMONY
FOR ALAN E. GELFAND
AS DOCTOR HONORIS CAUSA

It is a great honor for Professor Gerardo Sanz and for
me to sponsor Professor Alan E. Gelfand on the occasion
of his appointment as Doctor Honoris Causa by the
University of Zaragoza. It is also an honor for the three
proposing bodies, the Departments of Statistical Methods
and Applied Economics, and the University Institute of
Mathematics and its Applications, as well as for the Faculty
of Sciences, which has also supported the proposal for
this recognition.

According to the regulations governing the awarding
of the Doctor Honoris Causa (HC) degree by the Uni-
versity of Zaragoza, this distinction is conferred upon
individuals who have achieved exceptional prestige in re-
search and who embody universal values. In addition, the
candidate’s connection with the University of Zaragoza is
also considered. And, honestly, I cannot think of anyone
who fulfills each and every one of these requirements
better than Professor Alan E. Gelfand.



To avoid any doubt, we can follow the usual mathe-
matical procedure, and formulate this as a theorem:
we have three hypotheses, international prestige in re-
search, embodiment of universal values, and close con-
nection with the University of Zaragoza, and if we
demonstrate these hypotheses, we reach the conclusion
that Professor Alan E. Gelfand is the perfect candidate
to be awarded doctor HC by the University of Zaragoza.
The demonstration of these hypotheses is irrefutable,
as I will now show.

Hypothesis 1: Scientific prestige

I must say that proving this thesis is very easy; however,
doing so in just a few minutes is almost impossible,
since it is difficult to summarize in such a short time the
innumerable merits and awards of his academic career.
Therefore, what follows is only a brief overview.

Born in New York, Alan E. Gelfand earned his under-
graduate degree in Mathematics at the City College of
New York. He obtained his Ph.D. in Statistics from
Stanford University under the supervision of Professor
Herbert Solomon. He began his career at the University
of Connecticut, where he worked for more than thirty
years. In 2002, he joined Duke University, ranked sixth
among U.S. universities, where he was appointed James
B. Duke Professor of Statistical Science, the most pres-
tigious academic position at that institution.

His name will forever be linked to one of the most
significant milestones in recent statistical history: the
formalization of the use of Monte Carlo methods via
Markov Chains (MCMC) in the context of Bayesian
analysis. In 1990, together with Professor Adrian Smith,
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Professor Alan E. Gelfand published the article «Sampling-
Based Approaches to Calculating Marginal Densities» in
the Journal of the American Statistical Association (JASA), one
of the most prestigious journals in the field. This article
marked a turning point in modern statistical inference,
as it made it possible to tackle problems that had pre-
viously been virtually intractable. What had been purely
theoretical, thanks to Professor Alan E. Gelfand, became
a practical, applicable and useful technique. Gibbs
sampling, which has been a key algorithm in Bayesian
research ever since, should be referred to as «Gelfand’s
sampling», as some researchers say. That article has been
cited more than 10,500 times.

Since then, he has made significant contributions to
multiple areas, most notably Bayesian hierarchical model-
ing, spatial statistics, and spatio-temporal modeling. His
scientific productivity is extraordinary: he has published
more than 350 articles in academic journals, 10 books
and monographs, and supervised dozens of doctoral the-
sis. His work has been widely cited, and his influence has
been fundamental in the expansion of Bayesian analysis.
His book Hierarchical Modeling and Analysis for Spatial Data,
co-authored with Professors Banerjee and Carlin, is con-
sidered one of the «Bibles» of Bayesian modeling, and
they have recently published its third edition.

Professor Alan E. Gelfand has received numerous
international distinctions for his research, to name just
a few:

— Samuel Wilks Memorial Award.

— Distinguished Research Medal from ASA Section
on Statistics and the Environment.

— Elected Fellowship of the International Statistical
Institute (IMS), the American Statistical Association
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(ASA) and the International Society for Bayesian
Analysis (ISBA).

— Elected President of ISBA.

— Chernoff Excellence Statistic Award.

He was recognized as the Tenth Most Cited Mathe-
matical Scientist in the World for the period 1991-2001
(Science Watch) and currently ranks among the world’s top
mathematicians in the 3'* edition of the Research.com
rankings. Please note that this is only a brief overview, as
his list of awards and distinctions is extensive.

Hypothesis 2: Embodiment of universal values

As we have just established, Professor Alan E. Gelfand’s
research has made an essential contribution to the theo-
retical foundations of Bayesian analysis, but his influence
and work extend well beyond this area. He has devoted
an important part of his work to developing applications,
using Bayesian techniques, to address problems of social
interest, especially in environmental sciences, health, pol-
lution studies, and biodiversity; he has also worked on cli-
mate applications, developing models of great utility in
monitoring climate change. There is no doubt that his
research has helped to improve the world and the society
where we live.

His universal values are further reflected in his gen-
erous commitment to mentoring young researchers
and his extensive collaborations with diverse research
groups. He has supervised more than 35 doctoral stu-
dents, and, in the words of one of them, he is what might
be regarded as the definitive model of a thesis advisor.
He has also established research collaborations across
the world and all this with a generosity that has fostered
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not only professional relationships, but also lasting
friendships. Proof of this is the presence here today of
many leading international Bayesian statisticians, who
have traveled from various parts of Spain, as well as from
Rome, Milan, Southampton, and even across the Atlan-
tic from Washington, Texas, California, and North
Carolina. All are gathered here in Zaragoza today to
celebrate with him the conferral of his degree. This is
irrefutable evidence of the great impact Alan has had
on all of them, both as a researcher and as a person.

Hypothesis 3: Connection with the University of Zaragoza

Professor Alan E. Gelfand’s collaboration with the Uni-
versity of Zaragoza began in 2012, first with Professors
Manuel Salvador, Maria Asuncion Beamonte and Pilar
Gargallo from the Economia Aplicada Department, and
thereafter with the Faculty of Science. Since 2014, he has
been part of the Grupo Modelos Estocasticos, led by Pro-
fessor Gerardo Sanz, thanks to Professor Maria Asuncién
Beamonte, who introduced him to the group. Within this
framework, Professor Alan E. Gelfand has been part of the
working team in five nationally funded projects. His in-
fluence on this university is undeniable. Dennis Lindley,
one of the great promoters of Bayesianism in the 20™ cen-
tury, once said: «Inside every non-Bayesian there is a Bayes-
ian struggling to get out». Without a doubt, Professor Alan
E. Gelfand has brought out the Bayesian in many research-
ers at University of Zaragoza, including myself of course.
The result is that, thanks to his influence, there is now a
significant node of Bayesian statisticians at this university.

Regarding the university’s projection abroad, all of
Professor Alan E. Gelfand’s collaborations with the Uni-
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versity of Zaragoza have used Spanish data, often from
Aragén, so that through his numerous publications and
keynote talks, he has promoted both the region and the
university worldwide.

He has also facilitated research stays at Duke for UZ
professors, and he visits regularly our university. At this
point, I must express the honor and pleasure it is to work
with Alan, and I am sure that Jesas Asin, Jorge Castillo,
and other researchers here today will agree with me. In
each and every meeting with him, we learn something;
in our work discussions, new ideas always emerge, proposed
by him, and I would even say that his presence sparks
better ideas from the rest of the team, the «Zaragoza
team» as he calls us. Moreover, he fosters a collaborative
environment where all ideas are heard and valued, not
imposing hierarchies, even though his position would
certainly allow it. This accessibility and humility, despite
his many achievements, makes it easy to forget what an
honor and privilege it is to work with one of the world’s
leading mathematicians. It is therefore valuable to be
reminded of this by others. I recall that after publishing
our first article with him, a professor from another
university congratulated me on that publication, and I
said: «Yes, we are very happy, it’s my first article in JRSS»,
a prestigious journal. And he replied: «Actually, I wasn’t
congratulating you for that, but for having published with
Alan Gelfand». And he was right, the true honor of that
work was having worked with Alan. And it remains so, in
every project we undertake together, itis a privilege for us
to work with him.

With all this, we have proven beyond any doubt the
three hypotheses necessary to reach the conclusion we
wanted to demonstrate: that Professor Alan E. Gelfand
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is the perfect candidate to be awarded Doctor HC by
the University of Zaragoza.

Thus, we can only conclude this laudatio, dear Professor

Alan E. Gelfand, by saying thank you:

— Thank you for your valuable contributions to
Science, to Mathematics, to Statistics, and to Ba-
yesian analysis.

— Thank you for your support and generosity toward
us, toward the Modelos Estocasticos Group, and
toward the entire University of Zaragoza.

— Thank you for accepting your appointment as
Doctor Honoris Causa by the University of Zara-
goza, as a token of recognition for your contribu-
tions.

In short, dear Professor Alan E. Gelfand, we warmly
welcome you as a new ilustrado of our University, which
from now on is also your University.

Ana C. CEBRIAN
Gerardo SANZ
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CEREMONIAL

Para la investidura
como doctor honoris causa
por la Universidad de Zaragoza
del profesor

ALAN E. GELFAND

Seran sus padrinos académicos los profesores doctores:
Ana C. Cebrian
Gerardo Sanz






Los componentes de la comitiva académica ocupan los
lugares reservados a ellos en el estrado (el candidato se
habra quedado fuera del salon Paraninfo). Tras el Ven:
Creator, que se escucha en pie y con la cabeza descubierta,
la Rectora dice:

— Sedete et tegite caput.

(Sentaos y cubrios)

La Rectora ordena al secretario general la lectura del
acuerdo por el que se propone la concesion del Grado
honorifico.

— Lege Studii Generalis Civitatis Caesaraugustanae senatus-
consultum.

(Lee el Acuerdo del Consejo de Gobierno de la Universidad
de Zaragoza)

Realizada la lectura, la Rectora ordena a los padrinos:

— lIte arcessite candidatum.

(Id a buscar al candidato)

Los padrinos, precedidos por los maceros, van a buscar
al candidato. Acude este, destocado, acompanado de sus
padrinos, y saluda a la Presidencia con una inclinacion de
cabeza en el momento en que es nombrado por el secre-
tario general. Repite el saludo al Claustro y se sitian, en
pie, junto a su sitio en el estrado.



Finalizada la presentacion, les dice la Rectora:
— Sedete.
(Sentaos)
Y, dirigiéndose a los padrinos:
— Pronuntietur a patronis laus candidati.

(Hagase por los padrinos el elogio del candidato)

La profesora de la Facultad de Ciencias Ana C. Cebrian
ocupara la Catedray pronunciara el elogio del candidato.

Finalizado el elogio, la Rectora dice al Claustro y a los
presentes:

— Levate.

(Levantaos)

Y pregunta al Claustro:

— Conceditisne ut Alan E. Gelfand Honoris Causa munia doc-
toris induatur?

(¢Estdis de acuerdo con que Alan E. Gelfand sea revestido con
los atributos doctorales honoris causa?)

El Claustro responde:

— Concedimus.

(Lo estamos)

La Rectora dice al candidato:

— Auctoritate mihi concessa legibus Regni et Studii Generalis
Civitatis Caesaraugustanae, tibi confero Gradum Doctoris
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Honoris Causa. Patroni insignibus doctoralibus te vestient
et eorum significationem explicabunt.

(Por la autoridad que me otorgan las leyes del Reino y de la
Universidad de Zaragoza, te confiero el grado de doctor honoris
causa. Tus padrinos te investiran con las insignias doctorales y
te explicaran su significado)

Y advierte a los presentes:

— Sedete.

(Sentaos)

Los padrinos y el candidato se disponen para la inves-
tidura, saludando con una inclinacién de cabeza a la
Presidencia.

La madrina principal muestra a su candidato el birrete,
mientras dice:

— Accipe pileum quo non solum splendore ceteros praecedas,
sed quo etiam tamquam Minervae casside ad certamen mu-
nitior sis.

(Recibe el birrete no solo para que sobresalgas de entre los
demas, sino también para que estés mejor protegido en el com-
bate, como con el casco de Minerva)

Le impone el birrete.
Mostrandole el libro abierto, dicen (los dos padrinos):

— En librum apertum ut scientiarum arcana rveseres.

(He aqui el libro abierto, para que accedas a los secretos de las
ciencias)

Mostrandoselo cerrado, dicen:
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— En clausum ut eadem prout oporteat intimo pectore custodias.

(Helo cerrado, para que, segin proceda, lo guardes en lo pro-
fundo del corazon)

Se lo entregan diciendo:

— Do tibi facultatem legend:, intelligendi et interpretand.

(Te doy la facultad de ensenar, de comprender y de inter-
pretar)

Padrinos y candidato se abrazan, vuelven a sus lugares y
permanecen en pie.

Terminada la investidura del candidato, la Rectora dice a
los restantes:

— Levate.

(Levantaos)
Y dice al secretario general:

— Lege promissum novo doctori.

(Lee el juramento al nuevo doctor)

El secretario general, mostrando los Estatutos de la Uni-
versidad de Zaragoza, pregunta al candidato:

— Promittis observare et adimplere omnia el singula quae se-
quuntur?

(¢Prometes observar y cumplir todas y cada una de las cosas
que siguen?)

El candidato responde:

— Sic promitto et sic volo.
(Asi prometo y quiero)
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Y sigue el secretario general:

— Primo, semper et ubicumque fueris, iura et privilegia, ho-

norem Studii Generalis Civitatis Caesaraugustanae conser-
vabis et semper id iwvabis, favorem, auxilium et consilium
praestabis in factis et negotiis universitatis quotiens fueris
requisitus?
(Y, en primer lugar, siempre y doquier estuvieras, ¢guardaras
siempre los derechos y privilegios y el honor de la Universidad
de Zaragoza y la ayudaras siempre y le prestaras tu concurso,
apoyo y consejo en los asuntos y negocios universitarios tantas
veces cuantas fueras requerido?)

El doctorando contesta:

— Sic promitto et sic volo.

(Asi prometo y quiero)

La Rectora anade:

— Accipio promissum vostrum. Studium Generale Civitatis
Caesaraugustanae testis est et tudex erit si fidem decederes.

(Recibo tu promesa, la Universidad de Zaragoza es testigo y
sera juez si faltaras al compromiso)

El secretario general nombra al nuevo doctor, que se
acerca a la Mesa Presidencial para que la Rectora le im-
ponga la Medalla y le entregue el Titulo.

Vuelve a su sitio en el estrado.
A continuacion, la Rectora dice:

— Sedete.

(Sentaos)
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La Rectora da la palabra al nuevo doctor.

— Puede ocupar la Catedra el Doctor Alan E. Gelfand.

El doctor honoris causa, acompanado por sus padrinos,
ocupa la Catedra y pronuncia su discurso.

Al finalizar la intervencion del nuevo doctor, la Sra. Rec-
tora Magnifica toma la palabra.

Terminado su discurso, la Rectora dice:

— Pongamonos en pie para entonar el Gaudeamus Igitur.

Terminado el Gaudeamus Igitur, la Rectora clausura el
acto.
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EL ASCENSO DE LA INFERENCIA BAYESIANA
EN EL SIGLO XXI

ALAN E. GELFAND

Rectora Magnifica de la Universidad de Zaragoza
Miembros del equipo rectoral y del Claustro
Distinguidos doctores

Senoras y senores

1. Introduccion

Déjenme empezar agradeciendo a la profesora Ana
Carmen Cebridan y al profesor Gerardo Sanz Saiz que me
hayan propuesto para este honor tan excepcional y, tam-
bién, por todo el esfuerzo que han puesto en ello. Tam-
bién quisiera dar las gracias a mi esposa, la profesora
Maria Asuncion Beamonte, quien no solo ha sido una
colaboradora en el aspecto investigador, sino que tam-
bién me ha ayudado a establecer las relaciones en el mun-
do investigador que tengo en esta estimada institucion.
Por ultimo, permitanme extender mi agradecimiento al
profesor Jesuis Asin y al profesor Jorge Castillo Mateo,
miembros integrantes de nuestro exitoso equipo inves-
tigador en el Departamento de Métodos Estadisticos.
Todos vosotros me habéis ayudado a comenzar esta muy
especial parte de mi carrera investigadora, aqui en la Uni-



versidad de Zaragoza. Al final de este discurso de acepta-
cion, ofreceré mas detalles acerca de cuan satisfactorio ha
sido este periodo de mas de diez anos.

¢De qué trata este discurso? Reconozco que solamente
una pequena parte de esta audiencia es conocedora del
campo de la estadistica, mucho menos del paradigma de la
inferencia en estadistica bayesiana y su reciente evolucion.
Mi discurso se presentara a un nivel accesible para seguir el
camino de su evolucion. Para quienes ya son conocedores,
por favor, disculpen mi evidentemente subjetivo punto de
vista, que va a reflejar mi sesgo y, al mismo tiempo, me ex-
cuso de antemano por cualquier desafortunada omision.

Todo el mundo ha estado expuesto a la estadistica, a
veces de forma negativa, quiza refiriéndose a esta como
estasadistica.' Todo el mundo es consciente de los abusos
que se han cometido en nombre de la estadistica. No obs-
tante, la estadistica se ha convertido en un campo esen-
cial parala comunidad investigadora en todas las dreas de
la investigacion cientifica. En estos tiempos, raramente
basta con inferir conclusiones sin el soporte de datos.
Ademas, cada vez se recogen mds y mas datos y todos esta-
mos familiarizados con las expresiones ciencia de datos'y
grandes bases de datos.* Para una determinada area de la
investigacion, el papel de los estadisticos es facilitar la ex-
traccion de los resultados mas potentes que sea posible, a
partir de los datos que se han recogido. Y, de nuevo, con
cantidades masivas de datos, este papel es cada vez mas
critico y vital. La estadistica no es un campo glamuroso.
Habitualmente, los estadisticos hacen su trabajo en la
sombra, en segundo plano, con hallazgos que son presen-

1 En el idioma original (inglés), Sadistics.
2 Eninglés, Data Sciencey Big Data, respectivamente.
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tados por los especialistas en la investigacion del campo
que se trate. Sin embargo, hay una frase famosa atribuida
a John Tukey, uno de los mas reconocidos estadisticos de
la segunda mitad del siglo xx: «Los estadisticos trabajan
en el patio trasero de todo el mundo».

La contribucion del pensamiento y analisis estadisticos
se ha manifestado de manera sustancial en investigacio-
nes importantes en areas tales como la medicina, los pro-
ductos farmacéuticos, los negocios y la economia, las
ciencias sociales y la psicologia, los procesos medioam-
bientales y ecologicos, la ingenieria y las ciencias natura-
les. Los tipos de problemas abarcados son la comparacion
de poblaciones, el diseno de experimentos, la asociacion,
la regresion y la causalidad, los datos de series temporales
y la recopilacion secuencial de datos, los datos multiva-
riantes y, los mds queridos para mi, los datos espaciales y
espaciotemporales.

2. El paradigma bayesiano

¢Doénde encaja la inferencia bayesiana en este panora-
ma? Retrocedamos un poco para intentar explicar qué es
la «inferencia bayesiana» y en qué se diferencia de lo que
suele denominarse «inferencia clasica» o «frecuentista».
El origen de la inferencia bayesiana se remonta al reve-
rendo Thomas Bayes, ministro presbiteriano inglés, ade-
mas de estadistico y fil6sofo. En particular, lo que se cono-
ce como el «teorema o regla de Bayes» se desarroll6 en la
década de 1750, pero apareci6é impreso por primera vez
en 1763, gracias a Richard Price, amigo de Bayes. Por lo
tanto, no es tan antiguo como esta eminente institucion,
pero si lo es en el firmamento estadistico.

Bayes pensaba en términos de probabilidades y, en par-
ticular, en la idea de las probabilidades condicionadas.
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En su forma mas simple, dados dos eventos relacionados,
¢como cambia la probabilidad de que ocurra uno si el otro
ya ha ocurrido? Permitanme ofrecer un ejemplo elemen-
tal. Supongamos que tenemos una baraja de 52 cartas:
13 picas, 13 corazones, 13 diamantesy 13 tréboles. Supon-
gamos que sacamos una carta al azar, pero no la miramos.
¢Cual es la probabilidad de que sea una pica (suceso A)?
Respondemos inmediatamente 1/4. Sin embargo, supon-
gamos que sacamos una segunda carta de la baraja. La ob-
servamos y es una pica: suceso B. Podemos preguntarnos
de nuevo cudl es la probabilidad de que la primera carta
sea una pica. ¢;Esta nueva informacion ha cambiado la pro-
babilidad? De ser asi, ¢cudl es la respuesta correcta?

Buscamos P(A | B). Esta notacion significa la probabi-
lidad de que ocurra el suceso A, dado que ocurri6 el su-
ceso B. Bayes observo que podriamos calcular:

P(A| B) = P(B| A) P(A) / P(B),
ya que
P(A| B) P(B) = P(B| A) P(A) = P(A & B).
Ademas,
P(B) = P(B& A) + P(B& no A).
Entonces, directamente:

(12/51) x (1 /4)
P(A/B) = = 12/51
(12/51) x (1 /4) + (13 /51) x (3 /4)

¢Como se convirtié un cdlculo de probabilidad tan
simple en un paradigma de inferencia? Supongamos que
reemplazamos A y B por las variables aleatorias X e Y.
Entonces, obtenemos

SXIY) = Y] X) AX) / f(D);

34



es decir, la distribucion de la variable X dada la variable Y.
Yendo un paso mas alld, supongamos que consideramos
Y como los datos que hemos observado y X como lo que
desconocemos sobre la distribucion de los datos. Enton-
ces, obtenemos:

fldesconocidos | datos) =
fdatos | desconocidos) f(desconocidos) / f(datos) o
fdatos | desconocidos) f(desconocidos)™®

La proporcionalidad surge porque el término del de-
nominador en la linea central —f{datos)— no depende
de desconocidos. .o que vemos en esta ecuacion, esta espe-
cificaciéon del modelo, es un mecanismo tal que el primer
término de la igualdad nos permite aprender/inferir so-
bre lo que no conocemos a partir de lo que hemos obser-
vado. Esta es la esencia de la inferencia bayesiana. De he-
cho, parece completamente natural; es nuestra forma de
vivir la vida empiricamente. jTomamos decisiones basan-
donos en lo que hemos visto!

Ademas, supongamos que escribimos esa ecuacion en
la forma:

f(datos & desconocidos) =
fdatos |desconocidos) f(desconocidos) =
fdesconocidos | datos) f{datos)

Desde el término en la primera linea, vemos que se
proporciona una especificacion para la aleatoriedad con-
junta de lo que desconocemos y lo que observamos. La
forma central es lo que podriamos llamar generativa. Des-

3 El simbolo « indica proporcionalidad.

4 Desconocidos en el idioma original (inglés) es unknowns.

5 Expresion original en inglés: f{unknowns | data) = f{ data | unknowns)
Slunknowns) / fldata) < f(data | unknowns) f(unknowns).
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cribe como, por ejemplo, la Madre Naturaleza, o su dei-
dad favorita, elige una realizacion aleatoria de lo que des-
conocemos. Entonces, lo que vemos, como datos, es una
realizacion aleatoria dados los desconocidos que fueron
elegidos. La parte de la linea inferior es inferencial. Mues-
tra la revision de nuestras creencias, proporcionando una
distribucion para clarificar como actualizamos la inferen-
cia sobre lo que desconocemos, dado lo que hemos visto.
El altimo término, f(datos), no se tratara aqui, pero, con-
ceptualmente, nos permite ver como de buena es nuestra
especificacion del modelo y compararla con otras mode-
lizaciones con especificaciones diferentes.

Quiza se pregunten cual es el enfoque clasico o fre-
cuentista para la inferencia. El enfoque clasico, o al me-
nos un enfoque cldsico sensato, solo considera f{datos |
desconocidos), la llamada «verosimilitud»; es decir, intenta
encontrar valores de los desconocidos que con mayor proba-
bilidad hayan generado los datos que se han observado.
¢No parece que este razonamiento va en la direccion con-
traria? Se pide que se investigue lo que se podria haber
visto dado lo que se desconoce. Sin embargo, este para-
digma domindé la relativamente joven disciplina de la
inferencia estadistica durante practicamente todo el si-
glo xx, desde los padres fundadores de la materia, como
R. A. Fisher, junto con, quiza, Karl Pearson, Jerzy Neyman,
David Cox, C. R. Rao y P. C. Mahalanobis. Incluso hoy
dia sigue dominandola.

En el contexto del analisis de datos con un modelo
dado, habitualmente existen dos tipos de desconocidos
con diferentes objetivos de inferencia. Un tipo de desco-
nocidos se denominan generalmente «parametros» y la
inferencia asociada se denomina «estimacion». Los para-
metros son cantidades artificiales incorporadas a un mo-
delo explicativo, como, por ejemplo, los coeficientes de
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un modelo de regresion. No son reales, sino constructos
que proporcionan un mecanismo para capturar la expli-
cacion del modelo. Para diferentes especificaciones del
modelo, no significan lo mismo ni son comparables. Esto
no pretende restarle valor a la estimacion de parametros,
sino aclarar su funcion. El otro tipo de desconocidos es
una posible observacion no recopilada, pero sobre la
que se desea inferir. La inferencia asociada se denomina
«prediccion». Estos desconocidos son cantidades reales
que toman valores en el espacio de los datos. La predic-
cion de una temperatura, el valor de una propiedad, el
peso al nacer, etc., significan lo mismo independiente-
mente del modelo elegido; por lo tanto, los modelos pue-
den compararse directamente en términos de rendi-
miento predictivo. El uso de la prediccion en el analisis
de datos moderno es de vital importancia.

Vale la pena anadir algunas palabras mas sobre la di-
ferencia entre el enfoque clasico y el enfoque bayesiano.
El enfoque clasico suele limitar al analista de datos a ob-
servar algunas caracteristicas de f(datos / desconocidos), a
calcular estadisticos como funciones de los datos y a utili-
zarlos para comprender los desconocidos en la verosimili-
tud. ¢Qué estadisticos emplearemos y comor? ;Qué suce-
de si tenemos varias opciones de estadisticos para utilizar?
Sus distribuciones dependen de los desconocidosy, excepto
en casos simples, no suelen estar disponibles explicita-
mente. ;Y qué sucede si no existen estadisticos propues-
tos en la bibliografia que podamos usar?

En cualquier caso, habitualmente se recurre a resulta-
dos asintéticos para obtener una distribucion aproxima-
da de los estadisticos disponibles. ;:Como sabemos cudn-
do estas aproximaciones asintoticas son suficientemente
buenas y cuando son adecuadas? Estas aproximaciones
dependen de datos que nunca observaremos. Mas bien
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tenemos los datos que tenemos; nunca podremos tener
una cantidad infinita de datos, por lo que, cuando adop-
tamos esta aproximacion, no sabemos como de bien lo
estamos haciendo. Ademas, incluso en el mejor de los ca-
sos, la inferencia frecuentista es limitada. Podriamos ob-
tener una buena estimacién puntual, asi como algun tipo
de estimacion por intervalo y cierta medida de la incerti-
dumbre para esta cantidad desconocida, pero hasta alli
nos lleva la inferencia clasica.

Por el contrario, la inferencia bayesiana proporciona
una distribucién completa, la denominada «distribucion
a posteriori» para cualquier desconocido. Esto es lo mejor
que se podria esperar, ya que toda la inferencia estarda
disponible. Podemos obtener estimaciones puntuales
para los desconocidos; por ejemplo, la media, la mediana o
la moda. Podemos obtener estimaciones de incertidum-
bre, por ejemplo, para varianzas o rangos. También pode-
mos proporcionar cualquier afirmaciéon de probabilidad
que deseemos con respecto a los desconocidos; por ejem-
plo, la probabilidad a posteriori de que se encuentre en un
conjunto especifico. Lo mds importante es que esta infe-
rencia es exacta. Bajo el modelo que hemos especificado,
se proporciona con la precision y exactitud adecuadas.
No hay dependencia de resultados asintoticos ni de los
datos futuros que se puedan recoger. ;Y no presenta la
incomodidad de depender de resultados asintoticos!

¢Por qué la inferencia bayesiana no surgi6 como el pa-
radigma dominante? ¢:Por qué se ignoro, en general, has-
ta practicamente la altima parte del siglo xxX? La respuesta
inmediata es la necesidad de especificar f(desconocidos) la
distribucion de lo que desconocemos, lo que se denomi-
na distribucion a priori. Dado que diferentes personas po-
drian ofrecer diferentes versiones de f{desconocidos), sur-
girian diferentes inferencias a posteriori. La inferencia se
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vuelve subjetiva. ;Como podemos informar con seguri-
dad sobre resultados que dependen de la distribucion a
priori que elegimos? Ademads, a medida que el proceso
que estamos estudiando se vuelve mas complejo, la di-
mension del espacio de desconocidos se hace cada vez ma-
yor. La dimension de la distribucion a priori se vuelve muy
grande. Podria parecer que la sensibilidad a la especifi-
cacion de la distribucion a priori es un desafio imposible.
De hecho, con esta subjetividad, una critica insistente al
analisis de datos bayesiano es: ;como puede ser conside-
rada una buena ciencia?

Si bien es cierto que la necesidad de adoptar una dis-
tribucion a priori hace que la inferencia bayesiana sea
inherentemente subjetiva, esto no tiene por qué ser un
desafio practico serio. En algunos casos, podemos tener
informacion util sobre los desconocidos que podemos in-
corporar a la especificacion a priori. Esta informacion
puede surgir del conocimiento previo sobre el proceso
en estudio, como, por ejemplo, no adoptar distribuciones
a priori que tenderian a generar datos poco realistas. Al-
ternativamente, quizd los datos a priori recopilados sobre
el proceso hayan revelado donde es probable que se en-
cuentren los desconocidos antes de analizar los nuevos da-
tos. Otra posibilidad es la obtencién de distribuciones a
priori; es decir, un procedimiento disenado para utilizar
expertos que ayuden a proporcionar estas distribuciones
a priori adecuadamente informativas.

Sin embargo, en el siglo xx1, estos enfoques ya no se
suelen utilizar. En su lugar, preferimos dejar que «los datos
hablen por si mismos». Adoptamos las llamadas a prior: dé-
biles, vagas y no informativas para que los datos dominen la
inferencia en la distribucion a posteriori. Diferentes mode-
lizadores pueden preferir/sentirse comodos con diferen-
tes opciones de estas distribuciones a priori débiles y, en
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este sentido, es responsabilidad del analista bayesiano de
datos implementar algun analisis de sensibilidad de estas
distribuciones a priori. No pretendo ser superficial en este
sentido; sin embargo, al aplicarlos a conjuntos de datos
muy grandes, el nimero de parametros aumenta. Por lo
tanto, implementar dicho analisis se vuelve muy exigente
y, por lo general, revela poca sensibilidad en la inferencia.
Proporcionar nombres de forma muy selectiva y a ries-
go de ofender a algunos, a medida que la inferencia baye-
siana evolucion6 desde finales del siglo xx hasta princi-
pios del siglo XX1, nos dejaria una lista de investigadores
muy influyentes, que incluiria a sir Adrian F. M. Smith,
junto con los profesores James Berger (Universidad
Duke), Mike West (Universidad Duke), Persi Diaconis
(Universidad Stanford), Donald Rubin (Universidad de
Harvard, en aquel entonces), Christian Robert (Universi-
dad Paris-Dauphine) y Adrian Raftery (Universidad de
Washington). Actualmente, tres investigadores bayesia-
nos muy citados son los profesores Andrew Gelman (Uni-
versidad de Columbia) en ciencias sociales, Michael I.
Jordan (Universidad de California, Berkeley) en aprendi-
zaje automatico y David Dunson (Universidad Duke) en
métodos para datos complejos de alta dimension.
Espana alberga un rico pasado y presente de bayesia-
nos fundacionales. Ademas, en el siglo XXI1, encontramos
aqui cada vez mas investigadores centrados en la modeli-
zacion jerarquica. Los primeros esfuerzos se remontan al
grupo de la Universidad de Valencia, que incluia al profe-
sor José Bernardo, fundador de las reuniones «Valencia»,
de éxito internacional, que se celebraron cada cuatro
anos hasta 2010. Una de las lideres durante ese periodo
fue la profesora M. J. (Susie) Bayarri. La tradicion bayesia-
na continda en Valencia, con la participacion de los pro-
fesores Antonio Manuel Lopez Quilez, Carmen Armero,
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David Conesa y Anabel Forte. Un grupo bayesiano, ante-
riormente bastante activo, se encontraba en Granada, di-
rigido por los profesores Elias Moreno y F. Javier Giron.
Una lista parcial de otros investigadores bayesianos de re-
nombre internacional incluye a los profesores David Rios
Insua, Manuel Salvador, Maria Dolores (Lola) Ugarte,
Maria Eugenia Castellanos, Gonzalo Garcia-Donato, Virgi-
lio Gomez Rubio y Miguel Angel Gomez-Villegas.

En una mirada retrospectiva, Dennis Lindley fue uno
de los fundadores, defensores y desarrolladores del para-
digma de inferencia bayesiano, que también incluy6 a
Leonard J. Savage, Morris DeGroot, George Box, Arnold
Zellner y I. J. Good. Cabe destacar que Lindley predijo
que el siglo XXI1 seria bayesiano, debido a su claro atractivo
inferencial. Sin embargo, ¢cudl es la verdadera razén que
freno el paradigma bayesiano en el siglo XX, pero que aho-
ra le ha permitido consolidarse como el enfoque predi-
lecto para la investigacion de procesos complejos en el
siglo xx1? La respuesta es la computacion.

Un anadlisis de la expresion para la distribucion a poste-
riori de los desconocidos revela que solo esta disponible has-
ta la proporcionalidad. En consecuencia, la inferencia no
es posible, ya que el area bajo la distribucién debe norma-
lizarse a uno. No se pueden calcular las probabilidades ni
las esperanzas. Y, salvo en entornos bastante simples, la
constante necesaria, f(datos), no se puede obtener expli-
citamente. Para calcularlo, se requiere integrar sobre el
espacio de los desconocidos. A medida que la dimension de
los desconocidos aumenta, como ocurre con los problemas
de verdadero interés en el siglo XXI, esta integracion se
vuelve inviable. Por lo tanto, hasta 1990, la inferencia ba-
yesiana se encontraba estancada. Ofrecia un paradigma
de inferencia muy atractivo, pero se limitaba a los llama-
dos problemas «de juguete».
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Pero entonces, en 1990, se produjo el mayor avance
computacional. Tuve la fortuna de ser coautor (junto con el
profesor Adrian F. M. Smith) del articulo seminal que abri6é
las puertas a este avance (Gelfand y Smith, 1990). El enfo-
que, conocido como muestreo de Gibbs (Gibbs sampling) y
Markov chain Monte Carlo (MCMC), se ha convertido en la
herramienta mas destacada para implementar el analisis
bayesiano y, posiblemente, por si solo, impulsé el auge revo-
lucionario de la inferencia bayesiana en el siglo xx1.

¢Cual es la idea basica? Reemplazar la integracion, que
no es factible, por el muestreo. El muestreo es la idea
fundamental en estadistica; entendemos que, cuanto mas
muestreamos a una poblacion, mejor aprendemos sobre
ella (de hecho, este es el pensamiento frecuentista estan-
dar). Por lo tanto, la idea es que el muestreo de Gibbs y
MCMC proporcionan un mecanismo para muestrear un
numero arbitrario de realizaciones de la distribucién «
posteriori f{ desconocidos | datos). La verdadera novedad para
posibilitarlo fue crear y muestrear una cadena de Markov
cuya distribucion estacionaria o limite es la distribucion a
posteriori deseada. Una vez que la cadena fuera esencial-
mente estacionaria, se podian recolectar tantas muestras
de la distribucion a posteriori como se deseara. Con un
nuamero arbitrario de esas muestras, podriamos conocer/
aprender suficientemente bien sobre cualquier caracte-
ristica de esa distribucion, obteniendo el maximo benefi-
cio del paradigma de inferencia bayesiano. Casualmente,
cuando nos dimos cuenta del potencial de este avance
computacional, la comunidad investigadora experimen-
taba un drastico aumento en la disponibilidad, a precio
economico, de capacidad informatica de alta velocidad
que se requeria para implementar el necesario muestreo.

Evidentemente, este avance se convirtié en una bendi-
cion para los probabilistas, que han continuado perfeccio-
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nando las implementaciones; para los especialistas en in-
formatica, quienes han desarrollado algoritmos cada vez
mas eficientes para el ajuste de modelos utilizando el
muestreo de Gibbs y MCMC, y lo mas importante, para mi
y para todos los modelizadores, fue que apreciamos la libe-
racion que esta estrategia de ajuste de modelos nos brinda-
ba. Se podian ajustar los modelos que se quisieran, NO
solo los modelos para los que existia teoria asintotica. De
hecho, desde 1990, se han abierto las compuertas, y el al-
cance y tamano de los modelos que se emplean actualmen-
te en todo el mundo de las aplicaciones se ha vuelto enor-
me. Los tradicionalistas temen que los modelos se hayan
vuelto gigantescos y que pierdan la elegancia de las especi-
ficaciones mas simples. Es cierto que los modelos pueden
ser demasiado grandes para que los soporten los datos y
esta herramienta puede fomentar el sobreajuste de los mo-
delos a los datos disponibles. Sin embargo, el objetivo es,
una vez mas, explorar modelos flexibles para comprender
las caracteristicas de los procesos complejos. Cientifica-
mente, esto es tan valioso como se podria esperar, y evitar
modelos que sean demasiado grandes se convierte en una
componente del proceso de seleccion de modelos.

Cabe destacar que, a medida que la tecnologia avanza,
han surgido otras estrategias de ajuste de modelos, como
la aproximacion integrada de Laplace anidada (INLA),
que introduce la aproximacion integral; la computacion
bayesiana aproximada (ABC), que emplea simulacion ha-
cia delante, y el método bayesiano variacional, que reem-
plaza la integracion por la optimizacion. En muchas apli-
caciones, estos enfoques pueden ser mas adecuados o
eficientes, por lo que han sido reconocidos como utiles
para ciertos tipos de problemas. Sin embargo, actualmen-
te, el muestreo de Gibbs y MCMC siguen siendo la herra-
mienta mas utilizada en esta nueva era bayesiana.
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3. Modelizacion jerarquica

Para apreciar mejor como se emplea el paradigma en
entornos complejos, es util extender el teorema de Bayes
a una forma jerarquica o multinivel:

S(datos | proceso, desconocidos,) f(proceso | desconocidos,)
J(desconocidos,, desconocidos,)

Lo que hemos hecho es introducir el proceso de inte-
rés como una componente de la modelizacion y recono-
cer que los desconocidos, guian el proceso, y el proceso,
junto con un conjunto adicional de desconocidos,, dirigen
los datos que observamos durante el proceso. La inferen-
cia que perseguimos es la distribucion a posteriori f{ proceso,
desconocidos,, desconocidos, | datos), ya que, como se ha ex-
plicado anteriormente, la distribucion a posteriori permite
una inferencia completa. La forma justifica la denomina-
cion de «jerarquica» o «multinivel».

Esta expresion parece relativamente inocua, pero no
debe subestimarse su alcance. No se ha dicho nada sobre
la naturaleza de la especificacion de los datos o la especi-
ficacion del proceso. Estos pueden ser tan ricos como lo
justifique la recopilacion de datos, tan flexibles como los
aspectos del proceso que se busca capturar. Dichos as-
pectos se desarrollaran someramente en el siguiente pa-
rrafo. Es importante tener en cuenta que tanto la espe-
cificacion de datos como la especificacion del proceso
son aproximaciones y no son «correctos». Tienen incerti-
dumbre, tienen desconocidos. Se espera que sean utiles v,
en cualquier caso, se suministran anticipando la variabi-
lidad en respuesta a las entradas.

Profundizando, la distribuciéon conjunta en el lado iz-
quierdo se proporciona en términos de tres partes en el
lado derecho. Estas partes pueden ser mas faciles de for-
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malizar individualmente, en lugar de pensar en toda la
distribucién conjunta. Ademas, cada una de estas partes
puede ser bastante compleja; por ejemplo, la relacion en-
tre datos y procesos puede depender de muchas cosas.
Puede ser diferente para diferentes tipos de datos. Para el
modelo del proceso, puede haber aspectos espaciales o
temporales que sugieren que la modelizacion podria de-
pender de donde y cuando ocurri6 el proceso. La buena
noticia es que podemos utilizar el condicionamiento apro-
piado para capturar estos aspectos de manera sencilla. Las
ventajas de esta forma de pensar sobre la modelizacion
incluyen: (i)la capacidad de construir modelos complejos
a partir de relaciones condicionales simples. No necesita-
mos conceptualizar una especificacion integrada para el
problema, solo las componentes que se vincularan a través
de modelos graficos dirigidos: nodos y flechas; (i7) pode-
mos relajar los requisitos habituales que insisten en datos
independientes. La independencia condicional es sufi-
ciente. Normalmente, introducimos la dependencia en
una segunda o tercera etapa de la modelizacion que, de
forma marginal, introduce asociacion en los datos; (iii) po-
demos acomodar diferentes tipos de datos dentro del ana-
lisis, asi como los «datos» que se obtienen de, digamos, un
modelo computacional; () asociando aleatoriedad a lo
que observamos y a lo que no observamos, construimos
una especificacion completamente bayesiana. La unifica-
cion de la inferencia proporcionada por el paradigma ba-
yesiano nos lleva inmediatamente a mirar hacia la distri-
bucién a posteriori de todo lo que no observamos dado
todo lo que si observamos. Aunque tal distribucién sera de
gran dimension y analiticamente intratable, podemos
aprovechar las herramientas de calculo bayesiano, descri-
tas brevemente con anterioridad, para ajustar estos mode-
los y proporcionar la inferencia deseada.
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Un atractivo particular de este enfoque es que permi-
te la introduccion de todas las fuentes de informacion al
definir la modelizacién —mecanicista, teérica y empiri-
ca (que puede haber surgido de experimentos disena-
dos)—. Otro atractivo es la flexibilidad. Prevemos inves-
tigar diferentes especificaciones para seleccionar un
modelo general que funcione bien, tanto en estimacion
como en prediccion. El enfoque cambia de un debate
sobre qué procedimiento inferencial adoptar a poner el
foco en el desarrollo de modelos que logren una integra-
cion satisfactoria del conocimiento.

En general, lo anterior es un cambio notable que se ha
producido en el panorama de la recogida de datos en
nuestra transicion al siglo xx1. En los tltimos tiempos, se
observa un crecimiento notable en la recopilacion de da-
tos, obteniéndose conjuntos de datos de enorme tamano.
Ademas, ha habido un cambio hacia el examen de datos
observacionales, en lugar de limitarse a datos obtenidos
de experimentos cuidadosamente disenados. Por su dise-
no, estos ultimos imponen restricciones sobre qué reali-
zaciones del proceso podemos esperar encontrar, lo que
limita nuestra capacidad de comprender satisfactoria-
mente el proceso. Los primeros, sin embargo, proporcio-
nan realizaciones sin filtrar del proceso. Como se indic6
anteriormente, esto ha llevado a un aumento de analisis
de sistemas complejos que utilizan dichos datos, lo que
requiere la sintesis de multiples fuentes de informacién
(empirica, tedrica, fisica, etc.), que necesitan el desarro-
llo de los modelos multinivel. LLa modelizacion estocasti-
ca nos permite suministrar especificaciones para estas
realizaciones y ver qué tan bien podemos estimar y prede-
cir el comportamiento del proceso.

Permitanme ofrecer algunas palabras mas sobre la mo-
delizacion jerarquica o multinivel, ya que soy un miem-
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bro devoto de la modelizacion estocastica. Este es el mun-
do que ha cambiado drasticamente el papel del estadistico.
Este es el mundo que ha fomentado el trabajo investiga-
dor en equipo, haciendo del estadistico un participante
integral en la investigacion basada en equipos: un partici-
pante en la formulacion de las preguntas para investigar,
en la determinacion de los datos necesarios para investi-
gar estas preguntas, en el desarrollo de modelos para eva-
luar esas preguntas, en el desarrollo de estrategias para
ajustar esos modelos y en el analisis y resumen de la infe-
rencia resultante con esas especificaciones. Hemos llega-
do a un mundo nuevo y apasionante para la estadistica
moderna.

El rango de las aplicaciones de la modelizacion jerar-
quica abarca todas las ramas cientificas, tal y como se ha
senalado en la introduccion; por ejemplo, las ciencias
biomédicas y de la salud, la economia y las finanzas, el
medio ambiente y la ecologia, la ingenieria y las ciencias
naturales, las ciencias politicas y sociales. L.a modeliza-
cion jerarquica ha tomado el control del panorama de la
modelizacion estocdstica contemporanea. Aunque el ana-
lisis de tales modelos puede ser intentado a través de en-
foques no bayesianos, el paradigma bayesiano permite la
inferencia exacta y la adecuada evaluacion de la incerti-
dumbre dentro de la especificacion dada. Finalmente, el
obstaculo del calculo ha sido superado. Los ya menciona-
dos muestreo de Gibbs y MCMC, pero también el mues-
treo de importancia secuencial (sequential importance sam-
pling), filtros de particulas (particle filters) y aprendizaje de
particulas (particle learning), asi como INLA, ABC, y Bayes
variacional (variational Bayes), han desatado todo el poder
de dicha modelizacion.

«Modelizacion jerarquica», como ilustra la formula-
cion general anterior, es una expresion muy amplia que
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se refiere a una amplia gama de especificaciones de mode-
los. Sin entrar en complejas formalidades, se incluyen mo-
delos de efectos aleatorios, modelos de coeficientes alea-
torios, modelos de componentes de varianza, modelos de
efectos mixtos, modelos de variables latentes, modelos
de datos faltantes y modelos espacio-estado. La caracteris-
tica clave es que los modelos jerarquicos son modelos esta-
disticos que ofrecen un marco formal para el analisis, con
una complejidad de estructura que coincida con el siste-
ma que se estd estudiando.

En los primeros tiempos, la modelizacion jerarquica o
multinivel se referia a estructuras «anidadas»; por ejem-
plo, alumnos anidados en clases; clases anidadas dentro
de escuelas o casas, a su vez anidadas en barrios; barrios
anidados dentro de las ciudades. Sin embargo, hoy dia,
este tipo de modelizacion se ha extendido a la heteroge-
neidad; por ejemplo, en formas de regresion, es decir, la
relacion general. Ademas, pueden capturar la heteroge-
neidad modelizando varianzas/incertidumbre; por ejem-
plo, la variabilidad en los precios de la vivienda que cam-
bia de un barrio a otro. Pueden capturar dependencias
en los datos, es decir, posiblemente complejas dependen-
cias en los resultados a lo largo del tiempo, o del espacio
o sobre el contexto; por ejemplo, los precios de las vi-
viendas dentro de un vecindario tienden a ser similares.
Pueden modelizar la contextualidad, macrorrelaciones
(por ejemplo, tasas de interés y producto nacional bruto)
y microrrelaciones (por ejemplo, los precios individuales
de vivienda que dependeran de las caracteristicas indivi-
duales de la propiedad, asi como de las caracteristicas del
vecindario).

Vale la pena agregar algunas palabras que conecten la
inferencia bayesiana con el aprendizaje automatico (ma-
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chine learning). El aprendizaje automadtico generalmente
considera diferentes enfoques de aprendizaje, incluidos
el no supervisado, el supervisado, el semisupervisado o
refuerzo, con aplicacion a regresion, clasificacion y agru-
pamiento. El trabajo inicial fue determinista, realizando
optimizaciones adecuadas de las funciones de pérdida
objetivas, a menudo con algunos desconocidos fijos, para
obtener predicciones. Esta claro que este trabajo no es
adecuado, ya que se necesita incorporar la incertidum-
bre. Por ello, la inferencia bayesiana desempena un pa-
pel crucial en el aprendizaje automatico, proporcionan-
do un marco probabilistico para el razonamiento bajo
incertidumbre, mejorando la precision e interpretabili-
dad del modelo. De forma explicita, representando las
dependencias entre variables e incorporando informa-
cion probabilistica, las redes bayesianas permiten una
modelizacion mas satisfactoria de los sistemas complejos,
lo que permite que los algoritmos de aprendizaje auto-
matico, como se ha mencionado anteriormente, generen
predicciones y decisiones mejor informadas. Como ejem-
plo, la muy utilizada terminologia de aprendizaje profun-
do (deep learning) se refiere a la rama de aprendizaje auto-
matico que se basa en redes neuronales artificiales; es
decir, modelos graficos (versiones mds grandes de mode-
los jerarquicos), con multiples capas, de ahi el término
«profundo» (deep), que incorpora entradas y activaciones
adecuadas.

De este modo, surgi6 el aprendizaje automatico pro-
babilistico, lo que esencialmente signific6 incorporar las
tareas mencionadas anteriormente dentro de un marco
probabilistico, esencialmente un marco bayesiano, lo que
ha permitido el desarrollo de garantias de desempeno
probabilisticas y la cuantificaciéon de la incertidumbre,
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proporcionando limites de error y distribuciones para la
prediccion. El resultado es que la inferencia bayesiana se
ha vuelto esencial en el trabajo moderno del aprendizaje
automatico y la inteligencia artificial, ofreciendo una me-
todologia robusta para el razonamiento probabilistico y
la cuantificacion de la incertidumbre. Una muy buena
introduccion al aprendizaje automatico probabilistico,
particularmente a la revolucion del aprendizaje profun-
do, se presenta en el texto premiado de Kevin Murphy de
2012 (extenso, con 1200 paginas), con continuaciéon en
dos volumenes en 2022 (mas de 1600 paginas). El desa-
rrollo de Murphy se hace enteramente a través de la lente
unificadora del modelado probabilistico y la toma de de-
cisiones bayesiana.

Aqui expreso mi ultimo pensamiento sobre el futuro
de la estadistica como disciplina. Aunque la ciencia de
datos esta guiada desde la estadistica, ha habido un movi-
miento para incorporarla bajo ese gran paraguas, junto
con campos como la informatica, la ingenieria informati-
cay la computacion. La estadistica desempena un papel
vital en estos campos, pero creo que, al mismo tiempo, es
fundamental que la estadistica continte su trabajo como
campo independiente. Lo que ofrece la estadistica es una
investigacion basada en hipotesis, mas que lanzar algorit-
mos a grandes conjuntos de datos. Ofrece la oportunidad
de modelar cuidadosamente procesos complejos y estruc-
turas, en lugar de adoptar una metodologia de aprendi-
zaje automatico para ver qué podria «caer». Ademas, no
todas las investigaciones actuales involucran terabytes de
datos. Tiene que haber espacio para una investigacion re-
flexiva sobre procesos donde, a menudo, los datos son in-
adecuados y no se presentan en una cantidad exorbitante
(véase mas adelante).
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4. Analisis espacial

Permitanme abordar mi pasion investigadora duran-
te los casi ultimos treinta anos: el analisis de datos espa-
ciales. La cuestion clave aqui es que siempre que se reco-
pilen datos con alguna referencia espacial asociada;
inmediatamente resulta atil introducir la «ubicacién» en
el analisis. Como deberia hacerse depende de la natura-
leza de los datos espaciales en si; por ejemplo, con fines
ilustrativos, los datos sobre temperatura recogidos en los
lugares de monitorizacion se espera que muestren una
mayor similitud/correlacion en sitios mds cercanos en-
tre si, o se podria esperar que la incidencia de una enfer-
medad fuera mas parecida en unidades de areas vecinas
que en unidades alejadas. Ignorar esta dependencia es-
pacial disminuiria la efectividad de la especificacion de
un modelo.

Tuve la suerte de unirme a este mundo de la investiga-
ci6n en el momento propicio para ser un constructor pio-
nero/seminal del mundo del analisis de datos espaciales
bayesianos. Este campo estaba esencialmente vacio, la
oportunidad era enorme vy, a la luz de los comentarios
anteriores, la inferencia bayesiana estaba idealmente ade-
cuada para trabajar con datos espaciales. Por ser mas es-
pecifico respecto a ello, no esta claro que las aproxima-
ciones asintoticas pudieran ser las técnicas apropiadas
para el analisis espacial. ;Tendria sentido pensar en am-
pliar la region a estudio, tal y como se amplia la ventana
de tiempo con datos de series temporales, el también lla-
mado «aumento del dominio de la aproximacion asint6-
tica» (increasing domain asymptotics)? iTiene sentido pen-
sar en recopilar mas y mas observaciones dentro de la
region de estudio, los llamados «asintoticos de relleno»
(infill asymptotics)? La inferencia exacta proporcionada por
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el paradigma bayesiano impide las preocupaciones asin-
toticas.

Mas concretamente, mi nicho en el mundo del analisis
de datos espaciales ha sido la investigacion de complejos
procesos ambientales y ecolégicos; un entorno en el que
los datos, casi siempre, estan espacialmente referenciados.
Es un nicho donde los datos necesarios para conocer el
proceso son casi siempre insuficientes. Las variables que
realmente son mas apropiadas para conocer las relacio-
nes, a menudo, no estan disponibles; jno se quiere sacrifi-
car a un individuo de la poblacion a estudio! Los datos
subrogados son a menudo los mejores datos con los que
podemos trabajar. Ademas, la recopilacion de datos suele
estar limitada por el esfuerzo que requiere el muestreo.
Rara vez se tendran los recursos y el tiempo para mues-
trear completamente la region de interés. La especifica-
cion del modelo, colaborando con especialistas, en la ma-
teria se vuelve crucial para extraer la mejor historia
posible con los datos que tenemos. En este sentido, no solo
me siento comodo y recompensado con la modelizacion
que desarrollo, sino que a la vez puedo sentirme «verde».

Dentro de los datos espaciales, en esencia, existen tres
tipos. Uno es el caso en el que se elige un conjunto de ubi-
cacionesy, luego, se registra una variable, como la tempe-
ratura o el nivel de ozono, en cada una de esas localiza-
ciones. Este caso se conoce como «datos geoestadisticos»;
por ejemplo, la figura 1 muestra valores de un contami-
nante ambiental, los niveles de particulas en suspension
PM, ., obtenidos en las estaciones de monitorizacion en
Illinois, Indiana y Ohio. Vemos variacion espacial en los
niveles representados.

Un segundo tipo implica dividir una regién en unida-
des de drea y observar una variable en cada unidad; por
ejemplo, incidencia de una enfermedad o tasa de crimi-
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Figura 1. Mapa de los niveles de PM, ; en las estaciones de monitorizacion de la muestra
en tres estados del Medio Oeste de Estado Unidos; los simbolos representados indican el
rango del nivel promedio de PM, ; monitorizado durante el ario 2001.

nalidad. Estos datos se denominan «datos espaciales dis-
cretos»; por ejemplo, la figura 2 muestra, en Estados Uni-
dos, las puntuaciones promedio por estado de una prueba
estandarizada de ingreso en la universidad. Vemos que las
puntuaciones mas elevadas se encuentran en el centro
del pais.

El tercer caso considera aleatorio el conjunto de ubica-
ciones donde algin fenémeno fue observado; por ejem-
plo, una especie vegetal o la venta de una propiedad. Estos
datos se denominan «datos de patron puntual»; por ejem-
plo, la figura 3 muestra los patrones de puntos de la distri-
bucién de siete especies de plantas invasoras en Nueva
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Figura 2. Mapa de coropletas de las puntuaciones promedio del test SAT en 1999, en los
48 estados contiguos de Estados Unidos y el distrito de Columbia.
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Figura 3. Distribucion de ubicaciones de siete especies de plantas invasoras en Nueva
Inglaterra.

Inglaterra en Estados Unidos. Vemos que los patrones de
puntos varian de unas especies a otras.

Estos ejemplos pretenden ilustrar la riqueza de los
datos espaciales. Sin embargo, apenas profundizan so-
bre el alcance de los problemas donde la consideracion

54



de la ubicacion mejora, notablemente, nuestra capaci-
dad de aprender sobre un proceso complejo. Segin el
proceso, cada tipo de dato requiere su propia eleccion
de especificaciones de modelo. En este sentido, he teni-
do el placer de trabajar con todos estos tipos de datos,
haciendo contribuciones a problemas que incluyen ex-
posicion medioambiental, condiciones climaticas extre-
mas, distribucion de especies, ventas de propiedades,
direccion del viento y fusion de fuentes de datos.

5. Conclusion

Permitanme concluir con unas palabras sobre el tiem-
po tan especial que he pasado en Zaragoza. A finales del
pasado siglo y a principios de este vine frecuentemente a
Espana para asistir a los internacionalmente famosos en-
cuentros bayesianos cuatrienales Valencia, mencionados
anteriormente. Como ya hice notar, Espana alberga un
rico pasado y presente de bayesianos fundacionales. Sin
embargo, mi verdadera relacion con el pais comenzo6 con
mi conexion con Maria Asunciéon Beamonte, una profe-
sora de la Facultad de Economia y Empresa de la Univer-
sidad de Zaragoza, y ahora mi esposa. Empecé a visitar
Zaragoza con regularidad. Mi primer trabajo fue con el
profesor Manuel Salvador, la profesora Pilar Gargallo y la
profesora Beamonte, todos de la Facultad de Economiay
Empresa. Nuestro trabajo inicial se centré en capturar los
mercados laborales locales en Aragén (Chakraborty et al.,
2013). Sin embargo, nuestro trabajo mas trascendental
investig6 el mercado inmobiliario de Zaragoza. Primero,
examinamos el cambio en la distribucion espacial de las
ventas de inmuebles residenciales antes y después de la
crisis economica de principios del siglo xx1 (Paci et al.,
2017). Mas tarde, analizamos c6mo la aleatoriedad en los
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lugares de venta, ademas de las caracteristicas de las pro-
piedades, afectaban al precio de venta de las viviendas
(Paci et al., 2020). Este trabajo fue el primer esfuerzo para
investigar el efecto del muestreo preferencial en un mo-
delo hedénico, que es la especificacion de regresion habi-
tual para explicar el precio de venta. Durante la segunda
década del siglo xx1, también tuve la oportunidad de im-
partir en esta universidad un curso corto en analisis de
datos espaciales, asi como presentar una conferencia pu-
blica en la Facultad de Economia. También trabajé a lo
largo de mas de un ano con la profesora Beamonte y el
profesor Fernando Pérez-Cabello, del Departamento de
Geografia y Ordenacion del Territorio, sobre la recupera-
cion de la vegetacion tras los incendios forestales (Paci
et al., 2017).

Un cambio importante en mi relaciéon con la Universi-
dad de Zaragoza ocurri6 en 2017 cuando, gracias a la ayu-
da de la profesora Beamonte, conecté por primera vez,
profesionalmente, con los profesores Ana Carmen Ce-
brian, Jesus Asin y Jestis Abaurrea, del Departamento de
Métodos Estadisticos, iniciando una colaboracién para
investigar eventos de calor extremo, bajo un gran proyec-
to encabezado por el profesor Gerardo Sanz Saiz. Esta
conexion ha sido y sigue siendo notablemente producti-
va, llevando a cabo importantes contribuciones al desa-
rrollo de modelos de temperatura maxima diaria (Schliep
et al., 2021; Castillo-Mateo et al., 2022), extensiones del
calor extremo (Cebrian et al., 2021), comportamiento
cuantilico de las temperaturas maximas diarias (Casti-
llo-Mateo et al., 2023; Castillo-Mateo et al., 2024) y tem-
peraturas récord (Castillo-Mateo et al., 2025). Todo este
trabajo ha aparecido en los foros de mas alto nivel de es-
tadistica. En medio de esta colaboracion, Jorge Castillo
Mateo se uni6 al equipo para realizar su doctorado, con-
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tribuyendo notablemente con sus habilidades de modeli-
zacion y computacion, lo que lo condujo a culminar su
doctorado presentando una tesis que fue galardonada.
Continuamos estando muy activos y todavia, después de
seis anos de trabajo conjunto, nos reunimos cada dos se-
manas. También relacionado con estos trabajos, tuve la
oportunidad de dar charlas magistrales invitadas en con-
gresos como la Sociedad Espanola de Estadistica e Inves-
tigacion Operativa (SEIO) en Granada y en Madrid, asi
como en Workshop Internacional sobre Modelizacion
Espacio-Temporal (METMA) en Lleida.

En resumen, me resulta dificil describir lo orgulloso
que estoy de recibir este doctorado honoris causa. Es el
mayor honor que esta universidad, de mas de quinientos
anos de existencia, puede otorgar, y me siento honrado
de pensar que la universidad me ha considerado digno de
recibirlo. Otra vez, gracias a todos.
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THE RISE OF BAYESIAN INFERENCE
IN THE 215" CENTURY

AvLAN E. GELFAND

1. Introduction

Let me begin by thanking Professor Ana Carmen Ce-
bridan and Professor Gerardo Sanz Saiz for proposing me
for this exceptional honor. All of their effort on my be-
half is much appreciated. Also, let me thank my wife,
Professor Maria Asuncion Beamonte, who has not only
been a research collaborator but has also helped me to
navigate the building of the research relationships I have
at this esteemed institution. In addition, let me thank
Professor Jests Asin and Professor Jorge Castillo-Mateo
as integral members of our successful research team in
the Department of Statistical Methods. All of you have
helped me to begin a very special component of my re-
search career here at the Universidad de Zaragoza. At
the end I will offer more detail about how successful this
window of more than ten years has been.

What s this lecture about? I recognize that only a small
portion of the audience is knowledgeable regarding the



field of Statistics, much less the inference paradigm of
Bayesian Statistics and its recent evolution. So, my talk
will be presented at an accessible level to trace this evolu-
tion. To those who are knowledgeable, please excuse this
evidently subjective view. It will reflect my biases and,
therefore, I apologize in advance for any unfortunate
omissions.

Everyone has had some exposure to Statistics, often a
negative one, perhaps referring to it as Sadistics! And
everyone will be aware of abuses that have been committed
in the name of Statistics. However, Statistics has become a
critical field for the research communities across all areas
of scientific investigation. These days it rarely suffices to
infer conclusions without the support of data. Moreover,
more and more data is being collected — we are all now
familiar with the terms Data Science and Big Data. For a
given area of inquiry, the role of statisticians is to facilitate
extraction of the strongest stories that are possible from
the data that has been collected. And, again with massive
amounts of data, this role is increasingly critical. Statistics
is not a glamor field. Typically, statisticians do their work
in the background, with findings being presented by the
subject matter specialists in the investigation. However,
there is a famous quote attributed to John Tukey, one of
the most highly regarded statisticians of the second-half
of the 20" century: «Statisticians get to play in everyone’s
backyard».

Moreover, the contributions of statistical thinking
and analysis have manifested themselves in substantial
ways in major research areas such as medicine and phar-
maceuticals, business and economics, social sciences
and psychology, environmental and ecological processes,
engineering and natural science. The types of problems
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have spanned comparison of populations, design of ex-
periments, association, regression and causality, time se-
ries data, sequential data collection, multivariate data,
and, most dear to me, spatial and spatio-temporal data.

2. The Bayesian paradigm

Where does Bayesian inference fit into this landscape?
Let’s back up a bit to try to explain what Bayesian inference
is and how it differs from what is usually referred to as
classical or frequentist inference. The origin of Bayesian
inference dates to the Reverend Thomas Bayes, an English
Presbyterian minister as well as statistician and philoso-
pher. In particular, what is known as Bayes’ theorem or
Bayes’ rule was developed in the 1750’s but first appeared
in print in 1763 through Richard Price, a friend of Bayes.
So, itis not quite as old as this eminent institution but old
in the statistical firmament!

Bayes was thinking in terms of probabilities and, in
particular, the idea of conditional probabilities. In its sim-
plest form, given two related events, how does the chance
of the occurrence of one event change given the informa-
tion that the other event has occurred? Let me offer an
elementary illustration. Suppose we have a deck of 52
playing cards, 13 spades, 13 hearts, 13 diamonds, and 13
clubs. Suppose we draw a card at random from the deck
but don’t look at it. What is the probability that it is a
spade, event A? Immediately, we answer 1/4. However,
suppose we draw a second card from the deck. We look at
it and it is a spade, event B. We can again ask what is the
probability that the first card is a spade? Has this new in-
formation changed the probability? If so, what is the
correct answer? We are seeking P (A | B), this notation
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meaning the probability that event A occurs given event B
occurred. Bayes noted that we could calculate

P(A| B) = P(B| A) P(4) / P(B),
since
P(A| B) P(B) = P(B| A) P(A) = P(A & B).
Further,
P(B) = P(B& A) + P(B& no A).
Then, directly
(12/51) > (1/4)

P(A/B) = = 12/51
(12/51) x (1 ,4) + (13 /51) x (3 /4)

How did such a simple probability calculation be-
come an inference paradigm? Suppose we replace Aand B
by random variables X and Y. Then, we obtain

JXID=fY]X) f(X)/f(),

i.e., the distribution of the variable X given the variable Y.
Going one step further, suppose we think of Y as the data
we have observed and we think of Xas what we don’t know
about the distribution of the data. Then we obtain

[ (unknowns|data) =
[ (data|unknowns) f (unknowns) / [ (data) <
[ (data | unknowns) f (unknowns)

The proportionality arises since the denominator term
on the central line doesn’t depend on the unknowns. What
we see from this equation, this model specification, is a
mechanism such that the left side enables us to learn/infer
about what we don’t know given what we have observed.
This is the essence of Bayesian inference. In fact, it seems
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completely natural; it is how we live life empirically. We
make decisions based upon what we have seen!
Moreover, suppose we write this equation in the form

[ (data & unknowns) =
[ (data | unknowns) f(unknowns) =
[ (unknowns | data) f(data)

From the term in the first line, we see that we are pro-
viding a specification for the joint randomness of what we
don’t know and what we observe. The central form is what
we could call generative. It describes how, e.g.,, Mother Na-
ture (or your favorite deity) chooses a random realization
of what we don’t know. Then what we see, as data, is a ran-
dom realization given the unknowns that were chosen.
The last line form is inferential. It shows belief revision. It
provides a distribution to clarify how we revise inference
on what we don’t know given what we have seen. The last
term, f (data), will not get any attention here but, concep-
tually, it enables us to see how well our model specification
does and to compare it to other model specifications.

You may ask what is the classical or frequentist
approach for inference? The classical approach (or at
least a sensible classical approach) looks only at f (data |
unknowns), the so-called likelihood. That is, it tries to find
values for the unknowns which are likely to have given
you the data you have seen. Doesn’t this reasoning seem
backwards? It asks you to investigate what you might see
given what you don’t know. Nonetheless, this paradigm
dominated the relatively young discipline of statistical in-
ference for essentially the entire 20" century dating to
the founding fathers of the discipline such as R. A. Fisher
(along perhaps, with Karl Pearson, Jerzy Neyman, David
Cox, C. R. Rao, and P. C. Mahalanobis). And, even today,
it still dominates!
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In the context of doing data analysis with a given
model, there are customarily two types of unknowns with
different inference objectives. One type of unknown is
referred to as a parameter and associated inference is re-
ferred to as estimation. Parameters are artificial unknowns
incorporated into an explanatory model such as coeffi-
cients in a regression model. They are not real but, rather,
they are constructs to provide a device for capturing expla-
nation. They will not mean the same thing, they are not
comparable, across different model specifications. This
is not to demean the value of parameter estimation but
rather to clarify its role. The other type of unknown is a
potential observation that was not collected but we would
like to infer about. The associated inference is referred to
as prediction. Such unknowns are real quantities, taking
values in the space of the data. Prediction of a tempera-
ture, a property value, a birth weight, etc., means the same
thing regardless of the choice of model. So, models can be
directly compared in terms of predictive performance.
The use of prediction in modern data analysis is vital.

It is worth adding some more words here regarding
the difference between the classical approach and the
Bayesian approach. The classical approach typically limits
the data analyst to look at some features of f (data | un-
knowns), to calculate statistics as functions of the data, and
utilize them to learn about the unknowns in the likeli-
hood. Which statistics shall we employ and how shall we
employ them? What if we have several choices of statistics
to utilize? Their distributions depend upon the unknowns
and, except in simple cases, are usually unavailable ex-
plicitly. And, what if we have no statistics that have been
proposed in the literature to utilize?

In any event, customarily, we resort to asymptotics to
obtain an approximate distribution for available statistics.
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How do we know when the asymptotics are good enough,
when the approximation is adequate? These asymptotic
approximations depend upon data we will never see.
Rather, we have the data that we have; we can never have
an infinite amount of data, so we really do not know how
well we are doing in adopting asymptotics. Moreover,
even in the best case scenario, frequentist inference is
limited. We may be able to get a good point estimate for
an unknown and we may be able to get some sort of inter-
val estimate for this unknown, some uncertainty for this
unknown. However, that is as far as classical inference will
take us!

By contrast, Bayesian inference provides a full distribu-
tion, a so-called posterior distribution for any unknown.
This is the best one can hope for, all inference is availa-
ble. We can obtain point estimates for the unknown, e.g.,
mean, median, or mode. We can obtain uncertainty esti-
mates, e.g., variances or ranges. We can also provide any
probability statements we wish regarding the unknown,
e.g., the posterior probability that it will fall in a specified
set. Most importantly, this inference is exact. Under the
modeling that we have specified, it is supplied with appro-
priate precision and accuracy. There is no dependence
on asymptopia, on what future data might be collected.
There is no discomfort with regard to proximity to asymp-
topial

Why didn’t Bayesian inference emerge as the domi-
nant paradigm? Why was it ignored, by and large, until
essentially the last part of the 20™ century? The immediate
answer is the need to specify f (unknowns), the distribution
of what we don’t know, what is called the prior distribution.
Since different individuals may offer differ versions of f
(unknowns), different posterior inference will arise. In-
ference becomes subjective. How can we confidently report
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results which depend upon what prior we chose? Further-
more, as the process we are studying becomes more com-
plex, the dimension of the space of unknowns becomes
larger and larger. The dimension of the prior distribu-
tion becomes very large. It would appear that sensitivity
to prior specification is a hopeless challenge. Indeed,
with such subjectivity, how can this be good science, an
insistent criticism of Bayesian data analysis?

While it is true that the need to adopt a prior makes
Bayesian inference inherently subjective, this need not be
a serious practical challenge. In certain cases we may ac-
tually have useful information about unknowns which we
can incorporate into the prior specification. For instance,
this information may arise from prior knowledge about
the process under study, e.g., we don’t adopt priors that
would tend to generate unrealistic data. Alternatively,
perhaps prior data collected on the process has revealed
where unknowns are likely to lie before we analyze our
new data. Another possibility is prior elicitation, i.e., a de-
signed procedure to use experts to help to provide appro-
priately informative priors.

However, in the 2I* century these approaches are
not commonly employed. Rather, we prefer to take the
view to let «the data do the talking». We adopt so-called
weak, vague, noninformative priors in order to let the
data dominate the inference in the posterior. Different
modelers may prefer/feel comfortable with different
choices of these weak priors and, in this regard, it is
incumbent upon the Bayesian data analyst to implement
some prior sensitivity analysis. It is not my intention to be
glib in this regard. However, with application to larger
datasets, the number of parameters becomes large. Then,
implementing such analysis becomes very demanding
and typically reveals little inference sensitivity.
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Providing names very selectively and risking offending
some, as Bayesian inference moved from the end of the
20™ century to the start of the 21* century, very influential
researchers include Sir Adrian FM. Smith along with
Professor James Berger (Duke University), Professor Mike
West (Duke University), Professor Persi Diaconis (Stanford
University), Professor Donald Rubin (Harvard University,
at that time), Professor Christian Robert (Université Paris-
Dauphine), and Professor Adrian Raftery (University of
Washington). Currently, three very highly cited Bayesian
researchers are Professor Andrew Gelman (Columbia
University) in social sciences, Professor Michael I. Jordan
(University of California, Berkeley) in machine learning,
and Professor David Dunson (Duke University) in methods
for complex, high dimensional data.

Spain is home to a rich past and present of foundational
Bayesians. In the 21* century we also find more and more
researchers focusing on hierarchical modeling. Early effort
dates to the group at the University of Valencia including
Professor José Bernardo, who was the founder of the
internationally successful «Valencia» meetings which
occurred quadrennially through 2010. A leader during this
window was Professor M.J. (Susie) Bayarri. The Bayesian
tradition continues at Valencia including Professor Antonio
Manuel Lopez Quilez, Professor Carmen Armero, Professor
David Conesa, and Professor Anabel Forte. A formerly
quite active Bayesian group was in Granada led by Professor
Elias Moreno and Professor F. Javier Giron. A partial list
of other internationally regarded Bayesian researchers
includes Professor David Rios Insua, Professor Manuel
Salvador, Professor Maria Dolores (Lola) Ugarte, Professor
Maria Eugenia Castellanos, Professor Gonzalo Garcia-
Donato, Professor Virgilio Gomez Rubio, and Professor
Miguel Angel Gémez-Villegas.
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Stepping back, Dennis Lindley was a founding father,
proponent, and developer of the Bayesian inference
paradigm, which also included Leonard ]. Savage,
Morris DeGroot, George Box, Arnold Zellner, and 1.J.
Good. Notably, Lindley forecasted that the 21* century
would be Bayesian because of its clear inferential
attractiveness. However, what is the real story that held
back the Bayesian paradigm in the 20" century but has
now enabled it to rise as the «go to» approach for
investigating complex processes in the 21* century? The
answer is computation.

An inspection of the expression for the posterior
distribution of unknowns reveals that it is only available up
to proportionality. As a result, inference is not possible
since the area under the distribution has to be normalized
to one. Probabilities can not be calculated; expectations
can not be calculated. And, except for fairly simple
settings, the needed constant, f(dala) can not be obtained
explicitly. To calculate it requires integrating over the
space of unknowns. As the dimension of the unknowns
grows large, as it is with problems of real interest in the
21* century, this integration becomes infeasible. So, until
1990, Bayesian inference was stuck in a rut. It offered a
very attractive inference paradigm but was limited to so-
called «toy» problems.

But then, in 1990 came the major computational
breakthrough. And, I was fortunate to be the co-author,
with Adrian Smith, of the seminal paper which opened
the door for this breakthrough (Gelfand and Smith,
1990). The approach, known as Gibbs sampling and
Markov chain Monte Carlo (MCMC), has become the
most prominent tool for implementing Bayesian analysis
and, arguably, by itself, created the revolutionary rise of
Bayesian inference in the 21* century.
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What is the basic idea? Replace infeasible integration
with sampling. Indeed, sampling is the most fundamental
idea in Statistics; we understand that the more we sample
a population, the better we learn about it. (In fact, this is
standard «frequentist» thinking!) So, the idea is that
Gibbs sampling and MCMC provide a mechanism for
sampling arbitrarily many realizations from the posterior
distribution f (unknowns | data). The true novelty to enable
this was to create and sample a Markov chain whose
stationary or limiting distribution is the desired posterior.
Once the chain was essentially stationary, as many
posterior samples as desired could be collected. With
arbitrarily many samples from the posterior, we could
learn arbitrarily well about any features of the posterior.
We could achieve the full benefit of the Bayesian inference
paradigm. Serendipitously, at the time we realized the po-
tential of this computational breakthrough, the research
community was experiencing a dramatic increase in the
availability of inexpensive, high-speed computing capa-
bility required to implement the needed sampling.

Evidently, this breakthrough became a boon to proba-
bilists, who have continued to refine the implementations,
to the computer specialists who have developed increas-
ingly efficient algorithms for model fitting using Gibbs
sampling and MCMC, and, most importantly to me, to the
modelers who appreciated the liberation that this model
fitting strategy enabled. One could fit the models one
wanted, NOT just the models for which there was
asymptotic theory. Indeed, since 1990, the floodgates have
opened and the scope and size of models now being
employed across the world of applications has become
enormous. Traditionalists fret that models have now
become as big as elephants, that they lose the elegance of
simpler specifications. It is certainly the case that models
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can be too big for the data to support, that this tool can
encourage overfitting of models to the available data.
However, again, the opportunity to explore flexible models
to learn about features of complex processes is the
objective. Scientifically, this is as valuable as could be hoped
for and avoiding models that are too big becomes a
component of the model selection process.

A further word here is to note that, as technology
moves forward, other model fitting strategies have
emerged including integrated nested Laplace approxi-
mation (INLA) which introduces integral approxima-
tion, approximate Bayesian computation (ABC) which
employs forward simulation, and variational Bayes
which replaces integration with optimization. In many
applications these approaches can be more suitable or
more efficient. And, as such, they have been recognized
as being useful for certain classes of problems. However,
at present, Gibbs sampling and MCMC remain the most
widely used tool in this new Bayesian era.

3. Hierarchical modeling

In order to better appreciate how the paradigm is em-
ployed in complex settings, it is useful to extend Bayes’
Theorem to a hierarchical or multi-level form

[ (data | process, unknowns,) f (process | unknowns,)
J (unknowns,, unknowns,).

What we have done is introduce the process of interest
as a component of the modeling and recognize that
unknowns, drive the process and the process, with a further
set of unknowns,, drive the data that we observe under the
process. The inference we seek is the posterior distribution,
J (process, unknowns,, unknowns, | data) where, as above, the
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posterior enables full inference. The form justifies the
naming as hierarchical or multi-level.

This expression looks relatively innocuous, but its
breadth should not be underestimated. Nothing has been
said about the nature of the data specification or the pro-
cess specification. These can be as rich as data collection
justifies, as flexible as the aspects of the process one seeks
to capture. We will elaborate this a bit in the next para-
graph. Itisimportantto note thatboth the dataspecification
and the process specification are approximations; they are
not «correct». They have uncertainty, they have unknowns.
Hopefully, they are useful and, in any event, are supplied
anticipating variability in response to inputs.

Elaborating, the joint distribution on the left side is
provided in terms of three pieces on the right side. These
pieces may be easier to consider/formalize individually
rather than thinking about the entire joint distribution.
Moreover, each of these pieces can be quite complex. For
instance, the relationship between data and process
might depend on many things. It might be different for
different types of data. For the process model, there may
be spatial or temporal aspects that suggest the modeling
might depend upon where and when the process oc-
curred. The good news is that we can use appropriate
conditioning to capture these aspects in straightforward
ways. Advantages of this way of thinking about modeling
include: (i) the ability to construct complex models from
simple conditional relationships. We need not conceptual-
ize an integrated specification for the problem, only the
components which will be linked up through directed
graphical models — nodes and arrows, (i) we can relax
customary requirements that insist on independent data.
Conditional independence is enough. We typically intro-
duce dependence at a second or third stage in the mode-
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ling which, marginally, introduces association in the data,
(112) we can accommodate different data types within the
analysis as well as «data» that are output from, say, a com-
puter model, (iv) by attaching randomness to what we ob-
serve as well as to what we don’t observe, we build a fully
Bayesian specification. The unification of inference pro-
vided by the Bayesian paradigm leads immediately to
looking at the posterior distribution of everything that we
did not observe given everything that we did. Though
such a posterior will be high dimensional and analytically
intractable, we can take advantage of the Bayesian com-
putation tools, described briefly above, to fit these models
and provide the desired inference.

A particular attraction of this approach is that it allows
introduction of all sources of information in prescribing
the modeling — mechanistic, theoretical, and empirical
(which may have emerged from designed experiments!).
A further appeal is flexibility. We anticipate investigating
different specifications in order to select an overall model
which performs well with regard to both estimation and
prediction. The focus changes from a debate over which
inferential procedure to adopt to a focus on model devel-
opment that achieves satisfying integration of knowledge.

Overarching the above is a noteworthy change that has
occurred in the data collection landscape as we transi-
tioned to the 21" century. There has been remarkable
growth in data collection, with datasets now of enormous
size. Also, there has been a change toward examination of
observational data, rather than being restricted to care-
fully-collected, experimentally designed data. By their
design, the latter impose restrictions on what process
realizations we can expect to see, limiting our ability to
satisfactorily understand the process. The former provide
unfiltered realizations of the process. As above, this has
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led to an increased examination of complex systems
using such data, requiring synthesis of multiple sources
of information (empirical, theoretical, physical, etc.),
necessitating the development of multi-level models.
Stochastic modeling enables us to supply specifications for
these realizations to see how well we can estimate and
predict the behavior of the process.

Let me offer a few more words regarding hierarchical
or multi-level modeling. This is the world of stochastic
modeling in which I am a devoted member! This is the
world that has dramatically changed the role of the statis-
tician. This is the world that has fostered team research
making the statistician an integral participant in team-
based research — a participant in the framing of the
questions to be investigated, the determination of data
needs to investigate these questions, the development
of models to examine these questions, the development of
strategies to fit these models, and the analysis and
summarization of the resultant inference under these
specifications. We have arrived at an exciting new world
for modern Statistics.

The range of application for hierarchical modeling
runs the scientific gamut noted in the «Introduction»,
e.g., biomedical and health sciences, economics and fi-
nance, environment and ecology, engineering and natu-
ral science, political and social science. Hierarchical mod-
eling has taken over the landscape in contemporary
stochastic modeling. Though analysis of such modeling
can be attempted through non Bayesian approaches, the
Bayesian paradigm enables exact inference and proper
uncertainty assessment within the given specification.
Finally, the computation hurdle has been overcome.
MCMC and Gibbs sampling but also sequential impor-
tance sampling, particle filters and particle learning, as
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well as INLA, ABC, and variational Bayes, have unleashed
the full power of such modeling.

Hierarchical modeling, as the general formulation
above illustrates, is a very broad term that refers to wide
range of model specifications. Without formal elabora-
tion, they include random effects models, random coeffi-
cient models, variance-component models, mixed effect
models, latent variable models, missing data models, and
state space models. The key feature is that hierarchical
models are statistical models offering a formal framework
for analysis with a complexity of structure that matches
the system being studied.

In the early days, hierarchical or multi-level modeling
referred to «nested» structures, e.g, pupils nested in
classes, classes nested within schools or houses nested
in neighborhoods, neighborhoods nested within cities.
However, nowadays, such modeling is extended to
heterogeneity, e.g., in regression forms, i.e., the general
relationship. Additionally, they can capture heterogeneity
in modeling variances/uncertainty, e.g., variability in
house prices varies from neighborhood to neighborhood.
They can capture dependent data, that is, potentially
complex dependencies in outcomes over time, over space,
over context, e.g., house prices within a neighborhood
tend to be similar. They can model contextuality — macro
relations, e.g, interest rates and gross national product
and micro relations, e.g, individual house prices will
depend on individual property characteristics, as well as
on neighborhood characteristics.

It is worth adding some words connecting Bayesian
inference to machine learning. Machine learning usu-
ally considers learning approaches, including unsuper-
vised, supervised, semi-supervised, or reinforcement, with
application to regression, classification, and clustering.
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Initial work was deterministic, doing suitable optimi-
zations of objective loss functions, often with some
unknowns fixed, to obtain predictions. It is clear that
this is inadequate, that uncertainty is needed. As a
result, Bayesian inference plays a crucial role in machine
learning by providing a probabilistic framework for
reasoning under uncertainty and enhancing model
accuracy and interpretability. By explicitly representing
dependencies between variables and incorporating
probabilistic information, Bayesian networks enable
more satisfying modeling of complex systems. This allows
machine learning algorithms (as above) to make more
informed predictions and decisions. As an example, the
much used terminology deep learningis based on artificial
neural networks, i.e., graphical models (bigger versions
of hierarchical models) with many layers (hence the
term deep), incorporating suitable inputs and activation.

In this regard, probabilistic machine learning emer-
ged, which essentially meant embedding the foregoing
tasks within a probabilistic framework, essentially a
Bayesian framework. This has enabled the development
of probabilistic performance guarantees and uncertainty
quantification, providing error bounds and distributions
for prediction. The result is that Bayesian inference has
become essential in modern machine learning and artifi-
cial intelligence work, offering a robust methodology for
probabilistic reasoning and uncertainty quantification. A
very well-done entrée into probabilistic machine learning,
particularly the deep learning revolution, is presented
in the prize-winning text of Kevin Murphy from 2012
(a substantial 1,200 pages) with follow-on in two volumes
in 2022 (more than 1,600 pages). Murphy’s development
is entirely through the unifying lens of probabilistic
modeling and Bayesian decision-making.
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A last thought here concerns the future of Statistics as
a discipline. While Data Science is implicitly driven by Sta-
tistics, there is current movement to incorporate Statistics
under the umbrella of Data Science, along with fields
such as computer science, computer engineering, and in-
formatics. While Statistics plays a vital role in these fields,
I feel that it is critical for Statistics to continue to stand
alone as a field. What Statistics offers is hypothesis-driven
research rather than throwing algorithms at big datasets.
It offers the opportunity for careful modeling of complex
processes and structures rather than adopting machine
learning methodology to see what might fall out. Moreo-
ver, not all current research involves terabytes of data.
There has to be space for thoughtful investigation of pro-
cesses where, often, data is inadequate and not enormous
(see below).

4. Spatial analysis

Let me turn to my research passion for nearly the last
thirty years — analyzing spatial data. The key issue here is
that whenever data is collected with some associated spa-
tial referencing it becomes useful to introduce «location»
into the analysis. How this should be done depends upon
the nature of the spatial data itself but, illustratively, tem-
perature data collected at monitoring sites will be ex-
pected to show stronger similarity/correlation at sites
closer to each other. Incidence of disease might be ex-
pected to be more similar in neighboring areal units than
in units far apart. Ignoring this spatial dependence will
diminish the effectiveness of a model specification.

I was fortunate to join this research world in time to be
a seminal/pioneering builder of the world of Bayesian
spatial data analysis. This field was essentially empty, the
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opportunity was enormous and, in light of the foregoing
discussion, Bayesian inference was ideally suited for work-
ing with spatial data. To be more specific in this regard, it
is unclear what asymptotics would be appropriate for spa-
tial analysis. Does it make sense to think of expanding the
study region like expanding the time window with time
series data, so-called increasing domain asymptotics?
Does it make sense to think of collecting more and more
observations within the study region, so-called infill
asymptotics? The exactinference provided by the Bayesian
paradigm precludes asymptotic concerns.

Furthermore, my niche in the world of spatial data
analysis has been the investigation of complex environ-
mental and ecological processes, a setting in which data is
almost always spatially-referenced. It is a niche where the
data needed to learn about the process is almost always
inadequate. Variables that are really most appropriate to
learn about relationships are often not available; one
does not want to sacrifice an individual! Surrogates are
often the best data we can work with. Further, data collec-
tion is usually constrained by sampling effort. One will
rarely have the resources and the time to completely sam-
ple the region of interest. Collaborative model specifica-
tion with subject matter specialists becomes crucial in or-
der to squeeze out the best story one can with the data
that one has. So, in this regard, not only am I comfortable
and rewarded with the modeling that I develop, but I can
also feel «green».

For spatial data, in essence, there are three spatial
data types. One is the case where a set of locations is cho-
sen and then a variable such as temperature or ozone
level is recorded at each location. This case is referred to
as geostatistical data. For example, Figure 1 shows values of
an environmental pollutant, particulate matter (PM, ),
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Figure 1. Map of PM, ; sampling sites over three midwestern U.S. states; plotting charac-
ler indicales range of average monitored PM,  level over the year 2001.

obtained at monitoring stations in Illinois, Indiana, and
Ohio. We see spatial variation in the levels.

A second type involves partitioning a region into areal
units and observing a variable at each unit, e.g., incidence
of a disease or rate of crime. Such data is referred to as
discrete spatial data. For example, Figure 2 shows, for the
U.S., average test scores by state for a standardized col-
lege entrance test. We see that elevated scores occur in
the middle of the country.

The third case considers the set of locations where
something was observed as random, e.g., a plant species or
a property sale. Such data is referred to as point pattern
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Figure 2. Choropleth map of 1999 average verbal SAT scores, lower 48 U.S. states and the

district of Columbia.
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Figure 3. The distribution of locations for seven invasive plant species across New
England.

data. For example, Figure 3 shows the point patterns for
the distribution of seven invasive plant species in New
England in the U.S. We see that the point patterns vary
across species.

These examples are intended to illustrate the richness
of spatial data. Yet, they barely scratch the surface with
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regard to the scope of problems where consideration of
location vitally increases our ability to learn about a com-
plex process. According to the process, each spatial data
type requires its own choice of model specifications. In
this regard, I have had the pleasure of working with all of
these data types, making contributions to problems in-
cluding environmental exposure, extremes of weather,
species distribution, property sales, wind direction, and
fusion of data sources.

5. Conclusion

Let me conclude with some words regarding the spe-
cial time I have spent in Zaragoza. I came to Spain fre-
quently at the end of the last century and into the new
one to attend the internationally famous quadrennial
Bayesian Valencia meetings mentioned above. As I noted
earlier, Spain is home to a rich past and present of foun-
dational Bayesians. However, my real connection with the
country began with my relationship with Maria Asuncion
Beamonte, a professor in Facultad de Economia y Empre-
sa at the Universidad de Zaragoza, and now my wife. I
began to visit Zaragoza regularly. My early work was with
Professor Manuel Salvador, Professor Pilar Gargallo, and
Professor Beamonte, all in the Facultad de Economia y
Empresa. Our initial work focused on capturing local la-
bor markets in Aragén (Chakraborty et al., 2013). How-
ever, our more consequential work investigated the real
estate market in Zaragoza. We first examined the change
in spatial distribution of residential property sales before
and after the economic crisis at the beginning of the 21*
century (Paci et al., 2017). Then, we turned to how the
randomness in sales locations, in addition to the charac-
teristics of the properties, affected the selling price of
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properties (Paci et al., 2020). This work was the first effort
to investigate the effect of preferential sampling in he-
donic modeling, the customary regression specification
to explain selling price. During that second decade of the
21* century, I also enjoyed the opportunity to give a short
course in spatial data analysis here, as well as to present a
public lecture in the Faculty of Economics. I also worked
over the course of more than a year with Professor Bea-
monte and Professor Fernando Pérez Cabello in the De-
partment of Geography and Land Management on
post-wildfire vegetation recovery (Paci et al., 2017).

A consequential change in my relationship with the
Universidad occurred in 2017 when, through the help of
Professor Beamonte, I first connected professionally with
Professor Ana Carmen Cebrian, Professor Jesus Asin, and
Professor Jests Abaurrea in the Department of Métodos
Estadisticos to begin a research bridge to investigate ex-
treme heat events, under a large project headed by Pro-
fessor Gerardo Sanz Saiz. This connection has been and
continues to be remarkably productive, making major
contributions to the development of daily maximum tem-
perature models (Schliep et al., 2021; Castillo-Mateo et al.,
2022) extents of extreme heat (Cebrian et al., 2021),
quantile behavior of daily maximum temperatures
(Castillo-Mateo et al., 2023; Castillo-Mateo et al., 2024)
and record-breaking temperatures (Castillo-Mateo et al.,
2025). All of this work has appeared in the topmost tier of
statistical forums. Along the way, Jorge Castillo Mateo
joined the team for his Ph.D., presenting remarkable
modeling and computational skill, yielding an award-
winning Ph.D. thesis. We continue to be very active, still
meeting bi-weekly now after six years. Also related to this
work, I had the opportunity to give keynote talks at the
annual SEIO (the Spanish Statistical Society) meetings in
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Granada and Madrid, as well as at a METMA (Interna-
tional Workshop on Spatio-Temporal Modelling) meet-
ing in Lleida.

In summary, it is difficult for me to describe how proud
I am to receive this Doctor Honoris Causa. It is the high-
est honor that this more than 500 year old university can
award, and I am humbled to think that the University has
found me worthy. Otra vez, gracias a todos.
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